/* * Atheros Communication Bluetooth HCIATH3K UART protocol * * HCIATH3K (HCI Atheros AR300x Protocol) is a Atheros Communication's * power management protocol extension to H4 to support AR300x Bluetooth Chip. * * Copyright (c) 2009-2010 Atheros Communications Inc. * Copyright (c) 2012-2014 The Linux Foundation. All rights reserved. * * Acknowledgements: * This file is based on hci_h4.c, which was written * by Maxim Krasnyansky and Marcel Holtmann. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hci_uart.h" #ifdef CONFIG_SERIAL_MSM_HS #include #endif static int enableuartsleep = 1; module_param(enableuartsleep, int, 0644); MODULE_PARM_DESC(enableuartsleep, "Enable Atheros Sleep Protocol"); /* * Global variables */ /** Device table */ static struct of_device_id bluesleep_match_table[] = { { .compatible = "qca,ar3002_bluesleep" }, {} }; /** Global state flags */ static unsigned long flags; /** To Check LPM is enabled */ static bool is_lpm_enabled; /** Workqueue to respond to change in hostwake line */ static void wakeup_host_work(struct work_struct *work); /** Transmission timer */ static void bluesleep_tx_timer_expire(unsigned long data); static DEFINE_TIMER(tx_timer, bluesleep_tx_timer_expire, 0, 0); /** Lock for state transitions */ static spinlock_t rw_lock; #define PROC_DIR "bluetooth/sleep" #define POLARITY_LOW 0 #define POLARITY_HIGH 1 struct bluesleep_info { unsigned host_wake; /* wake up host */ unsigned ext_wake; /* wake up device */ unsigned host_wake_irq; int irq_polarity; struct uart_port *uport; }; struct work_struct ws_sleep; /* 1 second timeout */ #define TX_TIMER_INTERVAL 1 /* state variable names and bit positions */ #define BT_TXEXPIRED 0x01 #define BT_SLEEPENABLE 0x02 #define BT_SLEEPCMD 0x03 /* global pointer to a single hci device. */ static struct bluesleep_info *bsi; struct ath_struct { struct hci_uart *hu; unsigned int cur_sleep; struct sk_buff_head txq; struct work_struct ctxtsw; }; static void hsuart_serial_clock_on(struct uart_port *port) { BT_DBG(""); if (port) msm_hs_request_clock_on(port); else BT_INFO("Uart has not voted for Clock ON"); } static void hsuart_serial_clock_off(struct uart_port *port) { BT_DBG(""); if (port) msm_hs_request_clock_off(port); else BT_INFO("Uart has not voted for Clock OFF"); } static void modify_timer_task(void) { spin_lock(&rw_lock); mod_timer(&tx_timer, jiffies + (TX_TIMER_INTERVAL * HZ)); clear_bit(BT_TXEXPIRED, &flags); spin_unlock(&rw_lock); } static int ath_wakeup_ar3k(void) { int status = 0; if (test_bit(BT_TXEXPIRED, &flags)) { hsuart_serial_clock_on(bsi->uport); BT_DBG("wakeup device\n"); gpio_set_value(bsi->ext_wake, 0); msleep(20); gpio_set_value(bsi->ext_wake, 1); } if (!is_lpm_enabled) modify_timer_task(); return status; } static void wakeup_host_work(struct work_struct *work) { BT_DBG("wake up host"); if (test_bit(BT_SLEEPENABLE, &flags)) { if (test_bit(BT_TXEXPIRED, &flags)) hsuart_serial_clock_on(bsi->uport); } if (!is_lpm_enabled) modify_timer_task(); } static void ath_hci_uart_work(struct work_struct *work) { int status; struct ath_struct *ath; struct hci_uart *hu; ath = container_of(work, struct ath_struct, ctxtsw); hu = ath->hu; /* verify and wake up controller */ if (test_bit(BT_SLEEPENABLE, &flags)) status = ath_wakeup_ar3k(); /* Ready to send Data */ clear_bit(HCI_UART_SENDING, &hu->tx_state); hci_uart_tx_wakeup(hu); } static irqreturn_t bluesleep_hostwake_isr(int irq, void *dev_id) { /* schedule a work to global shared workqueue to handle * the change in the host wake line */ schedule_work(&ws_sleep); return IRQ_HANDLED; } static int ath_bluesleep_gpio_config(int on) { int ret = 0; BT_INFO("%s config: %d", __func__, on); if (!on) { if (disable_irq_wake(bsi->host_wake_irq)) BT_ERR("Couldn't disable hostwake IRQ wakeup mode\n"); goto free_host_wake_irq; } ret = gpio_request(bsi->host_wake, "bt_host_wake"); if (ret < 0) { BT_ERR("failed to request gpio pin %d, error %d\n", bsi->host_wake, ret); goto gpio_config_failed; } /* configure host_wake as input */ ret = gpio_direction_input(bsi->host_wake); if (ret < 0) { BT_ERR("failed to config GPIO %d as input pin, err %d\n", bsi->host_wake, ret); goto gpio_host_wake; } ret = gpio_request(bsi->ext_wake, "bt_ext_wake"); if (ret < 0) { BT_ERR("failed to request gpio pin %d, error %d\n", bsi->ext_wake, ret); goto gpio_host_wake; } ret = gpio_direction_output(bsi->ext_wake, 1); if (ret < 0) { BT_ERR("failed to config GPIO %d as output pin, err %d\n", bsi->ext_wake, ret); goto gpio_ext_wake; } gpio_set_value(bsi->ext_wake, 1); /* Initialize spinlock. */ spin_lock_init(&rw_lock); /* Initialize timer */ init_timer(&tx_timer); tx_timer.function = bluesleep_tx_timer_expire; tx_timer.data = 0; if (bsi->irq_polarity == POLARITY_LOW) { ret = request_irq(bsi->host_wake_irq, bluesleep_hostwake_isr, IRQF_DISABLED | IRQF_TRIGGER_FALLING, "bluetooth hostwake", NULL); } else { ret = request_irq(bsi->host_wake_irq, bluesleep_hostwake_isr, IRQF_DISABLED | IRQF_TRIGGER_RISING, "bluetooth hostwake", NULL); } if (ret < 0) { BT_ERR("Couldn't acquire BT_HOST_WAKE IRQ"); goto delete_timer; } ret = enable_irq_wake(bsi->host_wake_irq); if (ret < 0) { BT_ERR("Couldn't enable BT_HOST_WAKE as wakeup interrupt"); goto free_host_wake_irq; } return 0; free_host_wake_irq: free_irq(bsi->host_wake_irq, NULL); delete_timer: del_timer(&tx_timer); gpio_ext_wake: gpio_free(bsi->ext_wake); gpio_host_wake: gpio_free(bsi->host_wake); gpio_config_failed: return ret; } static int ath_lpm_start(void) { BT_DBG("Start LPM mode"); if (!bsi) { BT_ERR("HCIATH3K bluesleep info does not exist"); return -EIO; } bsi->uport = msm_hs_get_uart_port(0); if (!bsi->uport) { BT_ERR("UART Port is not available"); return -ENODEV; } INIT_WORK(&ws_sleep, wakeup_host_work); if (ath_bluesleep_gpio_config(1) < 0) { BT_ERR("HCIATH3K GPIO Config failed"); return -EIO; } return 0; } static int ath_lpm_stop(void) { BT_DBG("Stop LPM mode"); cancel_work_sync(&ws_sleep); if (bsi) { bsi->uport = NULL; ath_bluesleep_gpio_config(0); } return 0; } /* Initialize protocol */ static int ath_open(struct hci_uart *hu) { struct ath_struct *ath; struct uart_state *state; BT_DBG("hu %p, bsi %p", hu, bsi); if (!bsi) { BT_ERR("HCIATH3K bluesleep info does not exist"); return -EIO; } ath = kzalloc(sizeof(*ath), GFP_ATOMIC); if (!ath) { BT_ERR("HCIATH3K Memory not enough to init driver"); return -ENOMEM; } skb_queue_head_init(&ath->txq); hu->priv = ath; ath->hu = hu; state = hu->tty->driver_data; if (!state) { BT_ERR("HCIATH3K tty driver data does not exist"); return -ENXIO; } bsi->uport = state->uart_port; if (ath_bluesleep_gpio_config(1) < 0) { BT_ERR("HCIATH3K GPIO Config failed"); hu->priv = NULL; kfree(ath); return -EIO; } ath->cur_sleep = enableuartsleep; if (ath->cur_sleep == 1) { set_bit(BT_SLEEPENABLE, &flags); modify_timer_task(); } INIT_WORK(&ath->ctxtsw, ath_hci_uart_work); INIT_WORK(&ws_sleep, wakeup_host_work); return 0; } /* Flush protocol data */ static int ath_flush(struct hci_uart *hu) { struct ath_struct *ath = hu->priv; BT_DBG("hu %p", hu); skb_queue_purge(&ath->txq); return 0; } /* Close protocol */ static int ath_close(struct hci_uart *hu) { struct ath_struct *ath = hu->priv; BT_DBG("hu %p", hu); skb_queue_purge(&ath->txq); cancel_work_sync(&ath->ctxtsw); cancel_work_sync(&ws_sleep); if (bsi) ath_bluesleep_gpio_config(0); hu->priv = NULL; bsi->uport = NULL; kfree(ath); return 0; } #define HCI_OP_ATH_SLEEP 0xFC04 /* Enqueue frame for transmittion */ static int ath_enqueue(struct hci_uart *hu, struct sk_buff *skb) { struct ath_struct *ath = hu->priv; BT_DBG(""); if (bt_cb(skb)->pkt_type == HCI_SCODATA_PKT) { kfree_skb(skb); return 0; } /* * Update power management enable flag with parameters of * HCI sleep enable vendor specific HCI command. */ if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT) { struct hci_command_hdr *hdr = (void *)skb->data; if (__le16_to_cpu(hdr->opcode) == HCI_OP_ATH_SLEEP) { set_bit(BT_SLEEPCMD, &flags); ath->cur_sleep = skb->data[HCI_COMMAND_HDR_SIZE]; } } BT_DBG("hu %p skb %p", hu, skb); /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1); skb_queue_tail(&ath->txq, skb); set_bit(HCI_UART_SENDING, &hu->tx_state); schedule_work(&ath->ctxtsw); return 0; } static struct sk_buff *ath_dequeue(struct hci_uart *hu) { struct ath_struct *ath = hu->priv; return skb_dequeue(&ath->txq); } /* Recv data */ static int ath_recv(struct hci_uart *hu, void *data, int count) { struct ath_struct *ath = hu->priv; unsigned int type; BT_DBG(""); if (hci_recv_stream_fragment(hu->hdev, data, count) < 0) BT_ERR("Frame Reassembly Failed"); if (count & test_bit(BT_SLEEPCMD, &flags)) { struct sk_buff *skb = hu->hdev->reassembly[0]; if (!skb) { struct { char type; } *pkt; /* Start of the frame */ pkt = data; type = pkt->type; } else type = bt_cb(skb)->pkt_type; if (type == HCI_EVENT_PKT) { clear_bit(BT_SLEEPCMD, &flags); BT_INFO("cur_sleep:%d\n", ath->cur_sleep); if (ath->cur_sleep == 1) set_bit(BT_SLEEPENABLE, &flags); else clear_bit(BT_SLEEPENABLE, &flags); } if (test_bit(BT_SLEEPENABLE, &flags)) modify_timer_task(); } return count; } static void bluesleep_tx_timer_expire(unsigned long data) { if (!test_bit(BT_SLEEPENABLE, &flags)) return; BT_INFO("Tx timer expired\n"); set_bit(BT_TXEXPIRED, &flags); hsuart_serial_clock_off(bsi->uport); } static struct hci_uart_proto athp = { .id = HCI_UART_ATH3K, .open = ath_open, .close = ath_close, .recv = ath_recv, .enqueue = ath_enqueue, .dequeue = ath_dequeue, .flush = ath_flush, }; static int lpm_enabled; static int bluesleep_lpm_set(const char *val, const struct kernel_param *kp) { int ret; ret = param_set_int(val, kp); if (ret) { BT_ERR("HCIATH3K: lpm enable parameter set failed"); return ret; } BT_DBG("lpm : %d", lpm_enabled); if ((lpm_enabled == 0) && is_lpm_enabled) { ath_lpm_stop(); clear_bit(BT_SLEEPENABLE, &flags); is_lpm_enabled = false; } else if ((lpm_enabled == 1) && !is_lpm_enabled) { if (ath_lpm_start() < 0) { BT_ERR("HCIATH3K LPM mode failed"); return -EIO; } set_bit(BT_SLEEPENABLE, &flags); is_lpm_enabled = true; } else { BT_ERR("HCIATH3K invalid lpm value"); return -EINVAL; } return 0; } static struct kernel_param_ops bluesleep_lpm_ops = { .set = bluesleep_lpm_set, .get = param_get_int, }; module_param_cb(ath_lpm, &bluesleep_lpm_ops, &lpm_enabled, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(ath_lpm, "Enable Atheros LPM sleep Protocol"); static int lpm_btwrite; static int bluesleep_lpm_btwrite(const char *val, const struct kernel_param *kp) { int ret; ret = param_set_int(val, kp); if (ret) { BT_ERR("HCIATH3K: lpm btwrite parameter set failed"); return ret; } BT_DBG("btwrite : %d", lpm_btwrite); if (is_lpm_enabled) { if (lpm_btwrite == 0) { /*Setting TXEXPIRED bit to make it compatible with current solution*/ set_bit(BT_TXEXPIRED, &flags); hsuart_serial_clock_off(bsi->uport); } else if (lpm_btwrite == 1) { ath_wakeup_ar3k(); clear_bit(BT_TXEXPIRED, &flags); } else { BT_ERR("HCIATH3K invalid btwrite value"); return -EINVAL; } } return 0; } static struct kernel_param_ops bluesleep_lpm_btwrite_ops = { .set = bluesleep_lpm_btwrite, .get = param_get_int, }; module_param_cb(ath_btwrite, &bluesleep_lpm_btwrite_ops, &lpm_btwrite, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(ath_lpm, "Assert/Deassert the sleep"); static int bluesleep_populate_dt_pinfo(struct platform_device *pdev) { BT_DBG(""); if (!bsi) return -ENOMEM; bsi->host_wake = of_get_named_gpio(pdev->dev.of_node, "host-wake-gpio", 0); if (bsi->host_wake < 0) { BT_ERR("couldn't find host_wake gpio\n"); return -ENODEV; } bsi->ext_wake = of_get_named_gpio(pdev->dev.of_node, "ext-wake-gpio", 0); if (bsi->ext_wake < 0) { BT_ERR("couldn't find ext_wake gpio\n"); return -ENODEV; } return 0; } static int bluesleep_populate_pinfo(struct platform_device *pdev) { struct resource *res; BT_DBG(""); res = platform_get_resource_byname(pdev, IORESOURCE_IO, "gpio_host_wake"); if (!res) { BT_ERR("couldn't find host_wake gpio\n"); return -ENODEV; } bsi->host_wake = res->start; res = platform_get_resource_byname(pdev, IORESOURCE_IO, "gpio_ext_wake"); if (!res) { BT_ERR("couldn't find ext_wake gpio\n"); return -ENODEV; } bsi->ext_wake = res->start; return 0; } static int bluesleep_probe(struct platform_device *pdev) { int ret; BT_DBG(""); bsi = kzalloc(sizeof(struct bluesleep_info), GFP_KERNEL); if (!bsi) { ret = -ENOMEM; goto failed; } if (pdev->dev.of_node) { ret = bluesleep_populate_dt_pinfo(pdev); if (ret < 0) { BT_ERR("Failed to populate device tree info"); goto free_bsi; } } else { ret = bluesleep_populate_pinfo(pdev); if (ret < 0) { BT_ERR("Failed to populate device info"); goto free_bsi; } } BT_DBG("host_wake_gpio: %d ext_wake_gpio: %d", bsi->host_wake, bsi->ext_wake); bsi->host_wake_irq = platform_get_irq_byname(pdev, "host_wake"); if (bsi->host_wake_irq < 0) { BT_ERR("couldn't find host_wake irq\n"); ret = -ENODEV; goto free_bsi; } bsi->irq_polarity = POLARITY_LOW; /* low edge (falling edge) */ return 0; free_bsi: kfree(bsi); bsi = NULL; failed: return ret; } static int bluesleep_remove(struct platform_device *pdev) { kfree(bsi); return 0; } static struct platform_driver bluesleep_driver = { .probe = bluesleep_probe, .remove = bluesleep_remove, .driver = { .name = "bluesleep", .owner = THIS_MODULE, .of_match_table = bluesleep_match_table, }, }; int __init ath_init(void) { int ret; ret = hci_uart_register_proto(&athp); if (!ret) BT_INFO("HCIATH3K protocol initialized"); else { BT_ERR("HCIATH3K protocol registration failed"); return ret; } ret = platform_driver_register(&bluesleep_driver); if (ret) { BT_ERR("Failed to register bluesleep driver"); return ret; } return 0; } int __exit ath_deinit(void) { platform_driver_unregister(&bluesleep_driver); return hci_uart_unregister_proto(&athp); }