android_kernel_lge_bullhead/drivers/soc/qcom/bam_dmux.c

2834 lines
75 KiB
C

/* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* BAM DMUX module.
*/
#define DEBUG
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/wakelock.h>
#include <linux/of.h>
#include <linux/ipc_logging.h>
#include <linux/srcu.h>
#include <linux/msm-sps.h>
#include <linux/sizes.h>
#include <soc/qcom/bam_dmux.h>
#include <soc/qcom/smsm.h>
#include <soc/qcom/subsystem_restart.h>
#include <soc/qcom/subsystem_notif.h>
#include "bam_dmux_private.h"
#define BAM_CH_LOCAL_OPEN 0x1
#define BAM_CH_REMOTE_OPEN 0x2
#define BAM_CH_IN_RESET 0x4
#define LOW_WATERMARK 2
#define HIGH_WATERMARK 4
#define DEFAULT_POLLING_MIN_SLEEP (950)
#define MAX_POLLING_SLEEP (6050)
#define MIN_POLLING_SLEEP (950)
static int msm_bam_dmux_debug_enable;
module_param_named(debug_enable, msm_bam_dmux_debug_enable,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static int POLLING_MIN_SLEEP = 2950;
module_param_named(min_sleep, POLLING_MIN_SLEEP,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static int POLLING_MAX_SLEEP = 3050;
module_param_named(max_sleep, POLLING_MAX_SLEEP,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static int POLLING_INACTIVITY = 1;
module_param_named(inactivity, POLLING_INACTIVITY,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static int bam_adaptive_timer_enabled;
module_param_named(adaptive_timer_enabled,
bam_adaptive_timer_enabled,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static struct bam_ops_if bam_default_ops = {
/* smsm */
.smsm_change_state_ptr = &smsm_change_state,
.smsm_get_state_ptr = &smsm_get_state,
.smsm_state_cb_register_ptr = &smsm_state_cb_register,
.smsm_state_cb_deregister_ptr = &smsm_state_cb_deregister,
/* sps */
.sps_connect_ptr = &sps_connect,
.sps_disconnect_ptr = &sps_disconnect,
.sps_register_bam_device_ptr = &sps_register_bam_device,
.sps_deregister_bam_device_ptr = &sps_deregister_bam_device,
.sps_alloc_endpoint_ptr = &sps_alloc_endpoint,
.sps_free_endpoint_ptr = &sps_free_endpoint,
.sps_set_config_ptr = &sps_set_config,
.sps_get_config_ptr = &sps_get_config,
.sps_device_reset_ptr = &sps_device_reset,
.sps_register_event_ptr = &sps_register_event,
.sps_transfer_one_ptr = &sps_transfer_one,
.sps_get_iovec_ptr = &sps_get_iovec,
.sps_get_unused_desc_num_ptr = &sps_get_unused_desc_num,
.dma_to = DMA_TO_DEVICE,
.dma_from = DMA_FROM_DEVICE,
};
static struct bam_ops_if *bam_ops = &bam_default_ops;
#if defined(DEBUG)
static uint32_t bam_dmux_read_cnt;
static uint32_t bam_dmux_write_cnt;
static uint32_t bam_dmux_write_cpy_cnt;
static uint32_t bam_dmux_write_cpy_bytes;
static uint32_t bam_dmux_tx_sps_failure_cnt;
static uint32_t bam_dmux_tx_stall_cnt;
static atomic_t bam_dmux_ack_out_cnt = ATOMIC_INIT(0);
static atomic_t bam_dmux_ack_in_cnt = ATOMIC_INIT(0);
static atomic_t bam_dmux_a2_pwr_cntl_in_cnt = ATOMIC_INIT(0);
#define DBG(x...) do { \
if (msm_bam_dmux_debug_enable) \
pr_debug(x); \
} while (0)
#define DBG_INC_READ_CNT(x) do { \
bam_dmux_read_cnt += (x); \
if (msm_bam_dmux_debug_enable) \
pr_debug("%s: total read bytes %u\n", \
__func__, bam_dmux_read_cnt); \
} while (0)
#define DBG_INC_WRITE_CNT(x) do { \
bam_dmux_write_cnt += (x); \
if (msm_bam_dmux_debug_enable) \
pr_debug("%s: total written bytes %u\n", \
__func__, bam_dmux_write_cnt); \
} while (0)
#define DBG_INC_WRITE_CPY(x) do { \
bam_dmux_write_cpy_bytes += (x); \
bam_dmux_write_cpy_cnt++; \
if (msm_bam_dmux_debug_enable) \
pr_debug("%s: total write copy cnt %u, bytes %u\n", \
__func__, bam_dmux_write_cpy_cnt, \
bam_dmux_write_cpy_bytes); \
} while (0)
#define DBG_INC_TX_SPS_FAILURE_CNT() do { \
bam_dmux_tx_sps_failure_cnt++; \
} while (0)
#define DBG_INC_TX_STALL_CNT() do { \
bam_dmux_tx_stall_cnt++; \
} while (0)
#define DBG_INC_ACK_OUT_CNT() \
atomic_inc(&bam_dmux_ack_out_cnt)
#define DBG_INC_A2_POWER_CONTROL_IN_CNT() \
atomic_inc(&bam_dmux_a2_pwr_cntl_in_cnt)
#define DBG_INC_ACK_IN_CNT() \
atomic_inc(&bam_dmux_ack_in_cnt)
#else
#define DBG(x...) do { } while (0)
#define DBG_INC_READ_CNT(x...) do { } while (0)
#define DBG_INC_WRITE_CNT(x...) do { } while (0)
#define DBG_INC_WRITE_CPY(x...) do { } while (0)
#define DBG_INC_TX_SPS_FAILURE_CNT() do { } while (0)
#define DBG_INC_TX_STALL_CNT() do { } while (0)
#define DBG_INC_ACK_OUT_CNT() do { } while (0)
#define DBG_INC_A2_POWER_CONTROL_IN_CNT() \
do { } while (0)
#define DBG_INC_ACK_IN_CNT() do { } while (0)
#endif
struct bam_ch_info {
uint32_t status;
void (*notify)(void *, int, unsigned long);
void *priv;
spinlock_t lock;
struct platform_device *pdev;
char name[BAM_DMUX_CH_NAME_MAX_LEN];
int num_tx_pkts;
int use_wm;
};
#define A2_NUM_PIPES 6
#define A2_SUMMING_THRESHOLD 4096
#define A2_PHYS_BASE 0x124C2000
#define A2_PHYS_SIZE 0x2000
#define DEFAULT_NUM_BUFFERS 32
#ifndef A2_BAM_IRQ
#define A2_BAM_IRQ -1
#endif
static phys_addr_t a2_phys_base;
static uint32_t a2_phys_size;
static int a2_bam_irq;
static struct sps_bam_props a2_props;
static unsigned long a2_device_handle;
static struct sps_pipe *bam_tx_pipe;
static struct sps_pipe *bam_rx_pipe;
static struct sps_connect tx_connection;
static struct sps_connect rx_connection;
static struct sps_mem_buffer tx_desc_mem_buf;
static struct sps_mem_buffer rx_desc_mem_buf;
static struct sps_register_event tx_register_event;
static struct sps_register_event rx_register_event;
static bool satellite_mode;
static uint32_t num_buffers;
static unsigned long long last_rx_pkt_timestamp;
static struct device *dma_dev;
static bool dynamic_mtu_enabled;
static uint16_t ul_mtu = DEFAULT_BUFFER_SIZE;
static uint16_t dl_mtu = DEFAULT_BUFFER_SIZE;
static uint16_t buffer_size = DEFAULT_BUFFER_SIZE;
static bool no_cpu_affinity;
static struct bam_ch_info bam_ch[BAM_DMUX_NUM_CHANNELS];
static int bam_mux_initialized;
static int polling_mode;
static unsigned long rx_timer_interval;
static LIST_HEAD(bam_rx_pool);
static DEFINE_MUTEX(bam_rx_pool_mutexlock);
static int bam_rx_pool_len;
static LIST_HEAD(bam_tx_pool);
static DEFINE_SPINLOCK(bam_tx_pool_spinlock);
static DEFINE_MUTEX(bam_pdev_mutexlock);
static void notify_all(int event, unsigned long data);
static void bam_mux_write_done(struct work_struct *work);
static void handle_bam_mux_cmd(struct work_struct *work);
static void rx_timer_work_func(struct work_struct *work);
static void queue_rx_work_func(struct work_struct *work);
static int ssrestart_check(void);
static DECLARE_WORK(rx_timer_work, rx_timer_work_func);
static DECLARE_WORK(queue_rx_work, queue_rx_work_func);
static struct workqueue_struct *bam_mux_rx_workqueue;
static struct workqueue_struct *bam_mux_tx_workqueue;
static struct srcu_struct bam_dmux_srcu;
/* A2 power collaspe */
#define UL_TIMEOUT_DELAY 1000 /* in ms */
#define SHUTDOWN_TIMEOUT_MS 500
#define UL_WAKEUP_TIMEOUT_MS 2000
static void toggle_apps_ack(void);
static void reconnect_to_bam(void);
static void disconnect_to_bam(void);
static void ul_wakeup(void);
static void ul_timeout(struct work_struct *work);
static void vote_dfab(void);
static void unvote_dfab(void);
static void kickoff_ul_wakeup_func(struct work_struct *work);
static void grab_wakelock(void);
static void release_wakelock(void);
static int bam_is_connected;
static DEFINE_MUTEX(wakeup_lock);
static struct completion ul_wakeup_ack_completion;
static struct completion bam_connection_completion;
static struct delayed_work ul_timeout_work;
static int ul_packet_written;
static atomic_t ul_ondemand_vote = ATOMIC_INIT(0);
static struct clk *dfab_clk, *xo_clk;
static DEFINE_RWLOCK(ul_wakeup_lock);
static DECLARE_WORK(kickoff_ul_wakeup, kickoff_ul_wakeup_func);
static int bam_connection_is_active;
static int wait_for_ack;
static struct wake_lock bam_wakelock;
static int a2_pc_disabled;
static DEFINE_MUTEX(dfab_status_lock);
static int dfab_is_on;
static int wait_for_dfab;
static struct completion dfab_unvote_completion;
static DEFINE_SPINLOCK(wakelock_reference_lock);
static int wakelock_reference_count;
static int a2_pc_disabled_wakelock_skipped;
static LIST_HEAD(bam_other_notify_funcs);
static DEFINE_MUTEX(smsm_cb_lock);
static DEFINE_MUTEX(delayed_ul_vote_lock);
static int need_delayed_ul_vote;
static int in_ssr;
static int ssr_skipped_disconnect;
static struct completion shutdown_completion;
struct outside_notify_func {
void (*notify)(void *, int, unsigned long);
void *priv;
struct list_head list_node;
};
/* End A2 power collaspe */
/* subsystem restart */
static int restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *data);
static struct notifier_block restart_notifier = {
.notifier_call = restart_notifier_cb,
};
static int in_global_reset;
/* end subsystem restart */
#define bam_ch_is_open(x) \
(bam_ch[(x)].status == (BAM_CH_LOCAL_OPEN | BAM_CH_REMOTE_OPEN))
#define bam_ch_is_local_open(x) \
(bam_ch[(x)].status & BAM_CH_LOCAL_OPEN)
#define bam_ch_is_remote_open(x) \
(bam_ch[(x)].status & BAM_CH_REMOTE_OPEN)
#define bam_ch_is_in_reset(x) \
(bam_ch[(x)].status & BAM_CH_IN_RESET)
static int bam_dmux_uplink_vote;
static int bam_dmux_power_state;
static void *bam_ipc_log_txt;
#define BAM_IPC_LOG_PAGES 5
/**
* Log a state change along with a small message.
* Complete size of messsage is limited to @todo.
* Logging is done using IPC Logging infrastructure.
*
* States
* D: 1 = Power collapse disabled
* R: 1 = in global reset
* P: 1 = BAM is powered up
* A: 1 = BAM initialized and ready for data
* V: 1 = Uplink vote for power
* U: 1 = Uplink active
* W: 1 = Uplink Wait-for-ack
* A: 1 = Uplink ACK received
* #: >=1 On-demand uplink vote
* D: 1 = Disconnect ACK active
*/
#define BAM_DMUX_LOG(fmt, args...) \
do { \
if (bam_ipc_log_txt) { \
ipc_log_string(bam_ipc_log_txt, \
"<DMUX> %c%c%c%c %c%c%c%c%d " fmt, \
a2_pc_disabled ? 'D' : 'd', \
in_global_reset ? 'R' : 'r', \
bam_dmux_power_state ? 'P' : 'p', \
bam_connection_is_active ? 'A' : 'a', \
bam_dmux_uplink_vote ? 'V' : 'v', \
bam_is_connected ? 'U' : 'u', \
wait_for_ack ? 'W' : 'w', \
ul_wakeup_ack_completion.done ? 'A' : 'a', \
atomic_read(&ul_ondemand_vote), \
args); \
} \
} while (0)
#define DMUX_LOG_KERR(fmt, args...) \
do { \
BAM_DMUX_LOG(fmt, args); \
pr_err(fmt, args); \
} while (0)
static inline void set_tx_timestamp(struct tx_pkt_info *pkt)
{
unsigned long long t_now;
t_now = sched_clock();
pkt->ts_nsec = do_div(t_now, 1000000000U);
pkt->ts_sec = (unsigned)t_now;
}
static inline void verify_tx_queue_is_empty(const char *func)
{
unsigned long flags;
struct tx_pkt_info *info;
int reported = 0;
spin_lock_irqsave(&bam_tx_pool_spinlock, flags);
list_for_each_entry(info, &bam_tx_pool, list_node) {
if (!reported) {
BAM_DMUX_LOG("%s: tx pool not empty\n", func);
if (!in_global_reset)
pr_err("%s: tx pool not empty\n", func);
reported = 1;
}
BAM_DMUX_LOG("%s: node=%p ts=%u.%09lu\n", __func__,
&info->list_node, info->ts_sec, info->ts_nsec);
if (!in_global_reset)
pr_err("%s: node=%p ts=%u.%09lu\n", __func__,
&info->list_node, info->ts_sec, info->ts_nsec);
}
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
}
static void __queue_rx(gfp_t alloc_flags)
{
void *ptr;
struct rx_pkt_info *info;
int ret;
int rx_len_cached;
uint16_t current_buffer_size;
mutex_lock(&bam_rx_pool_mutexlock);
rx_len_cached = bam_rx_pool_len;
current_buffer_size = buffer_size;
mutex_unlock(&bam_rx_pool_mutexlock);
while (bam_connection_is_active && rx_len_cached < num_buffers) {
if (in_global_reset)
goto fail;
info = kmalloc(sizeof(struct rx_pkt_info), alloc_flags);
if (!info) {
DMUX_LOG_KERR(
"%s: unable to alloc rx_pkt_info w/ flags %x, will retry later\n",
__func__,
alloc_flags);
goto fail;
}
info->len = current_buffer_size;
INIT_WORK(&info->work, handle_bam_mux_cmd);
info->skb = __dev_alloc_skb(info->len, alloc_flags);
if (info->skb == NULL) {
DMUX_LOG_KERR(
"%s: unable to alloc skb w/ flags %x, will retry later\n",
__func__,
alloc_flags);
goto fail_info;
}
ptr = skb_put(info->skb, info->len);
info->dma_address = dma_map_single(dma_dev, ptr, info->len,
bam_ops->dma_from);
if (info->dma_address == 0 || info->dma_address == ~0) {
DMUX_LOG_KERR("%s: dma_map_single failure %p for %p\n",
__func__, (void *)info->dma_address, ptr);
goto fail_skb;
}
mutex_lock(&bam_rx_pool_mutexlock);
list_add_tail(&info->list_node, &bam_rx_pool);
rx_len_cached = ++bam_rx_pool_len;
current_buffer_size = buffer_size;
ret = bam_ops->sps_transfer_one_ptr(bam_rx_pipe,
info->dma_address, info->len, info, 0);
if (ret) {
list_del(&info->list_node);
rx_len_cached = --bam_rx_pool_len;
mutex_unlock(&bam_rx_pool_mutexlock);
DMUX_LOG_KERR("%s: sps_transfer_one failed %d\n",
__func__, ret);
dma_unmap_single(dma_dev, info->dma_address,
info->len,
bam_ops->dma_from);
goto fail_skb;
}
mutex_unlock(&bam_rx_pool_mutexlock);
}
return;
fail_skb:
dev_kfree_skb_any(info->skb);
fail_info:
kfree(info);
fail:
if (!in_global_reset) {
DMUX_LOG_KERR("%s: rescheduling\n", __func__);
schedule_work(&queue_rx_work);
}
}
static void queue_rx(void)
{
/*
* Hot path. Delays waiting for the allocation to find memory if its
* not immediately available, and delays from logging allocation
* failures which cannot be tolerated at this time.
*/
__queue_rx(GFP_NOWAIT | __GFP_NOWARN);
}
static void queue_rx_work_func(struct work_struct *work)
{
/*
* Cold path. Delays can be tolerated. Use of GFP_KERNEL should
* guarentee the requested memory will be found, after some ammount of
* delay.
*/
__queue_rx(GFP_KERNEL);
}
/**
* process_dynamic_mtu() - Process the dynamic MTU signal bit from data cmds
* @current_state: State of the dynamic MTU signal bit for the current
* data command packet.
*/
static void process_dynamic_mtu(bool current_state)
{
static bool old_state;
if (!dynamic_mtu_enabled)
return;
if (old_state == current_state)
return;
mutex_lock(&bam_rx_pool_mutexlock);
if (current_state) {
buffer_size = dl_mtu;
BAM_DMUX_LOG("%s: switching to large mtu %x\n", __func__,
dl_mtu);
} else {
buffer_size = DEFAULT_BUFFER_SIZE;
BAM_DMUX_LOG("%s: switching to reg mtu %x\n", __func__,
DEFAULT_BUFFER_SIZE);
}
mutex_unlock(&bam_rx_pool_mutexlock);
old_state = current_state;
}
static void bam_mux_process_data(struct sk_buff *rx_skb)
{
unsigned long flags;
struct bam_mux_hdr *rx_hdr;
unsigned long event_data;
uint8_t ch_id;
void (*notify)(void *, int, unsigned long);
void *priv;
rx_hdr = (struct bam_mux_hdr *)rx_skb->data;
ch_id = rx_hdr->ch_id;
process_dynamic_mtu(rx_hdr->signal & DYNAMIC_MTU_MASK);
rx_skb->data = (unsigned char *)(rx_hdr + 1);
skb_set_tail_pointer(rx_skb, rx_hdr->pkt_len);
rx_skb->len = rx_hdr->pkt_len;
rx_skb->truesize = rx_hdr->pkt_len + sizeof(struct sk_buff);
event_data = (unsigned long)(rx_skb);
notify = NULL;
priv = NULL;
spin_lock_irqsave(&bam_ch[ch_id].lock, flags);
if (bam_ch[ch_id].notify) {
notify = bam_ch[ch_id].notify;
priv = bam_ch[ch_id].priv;
}
spin_unlock_irqrestore(&bam_ch[ch_id].lock, flags);
if (notify)
notify(priv, BAM_DMUX_RECEIVE, event_data);
else
dev_kfree_skb_any(rx_skb);
queue_rx();
}
/**
* set_ul_mtu() - Converts the MTU code received from the remote side in the
* open cmd into a byte value.
* @mtu_code: MTU size code to translate.
* @reset: Reset the MTU.
*/
static void set_ul_mtu(int mtu_code, bool reset)
{
static bool first = true;
if (reset) {
first = true;
ul_mtu = DEFAULT_BUFFER_SIZE;
return;
}
switch (mtu_code) {
case 0:
if (ul_mtu != SZ_2K && !first) {
BAM_DMUX_LOG("%s: bad request for 2k, ul_mtu is %d\n",
__func__, ul_mtu);
ssrestart_check();
}
ul_mtu = SZ_2K;
break;
case 1:
if (ul_mtu != SZ_4K && !first) {
BAM_DMUX_LOG("%s: bad request for 4k, ul_mtu is %d\n",
__func__, ul_mtu);
ssrestart_check();
}
ul_mtu = SZ_4K;
break;
case 2:
if (ul_mtu != SZ_8K && !first) {
BAM_DMUX_LOG("%s: bad request for 8k, ul_mtu is %d\n",
__func__, ul_mtu);
ssrestart_check();
}
ul_mtu = SZ_8K;
break;
case 3:
if (ul_mtu != SZ_16K && !first) {
BAM_DMUX_LOG("%s: bad request for 16k, ul_mtu is %d\n",
__func__, ul_mtu);
ssrestart_check();
}
ul_mtu = SZ_16K;
break;
default:
BAM_DMUX_LOG("%s: bad request %d\n", __func__, mtu_code);
ssrestart_check();
break;
}
first = false;
}
static inline void handle_bam_mux_cmd_open(struct bam_mux_hdr *rx_hdr)
{
unsigned long flags;
int ret;
mutex_lock(&bam_pdev_mutexlock);
if (in_global_reset) {
BAM_DMUX_LOG("%s: open cid %d aborted due to ssr\n",
__func__, rx_hdr->ch_id);
mutex_unlock(&bam_pdev_mutexlock);
queue_rx();
return;
}
if (rx_hdr->signal & DYNAMIC_MTU_MASK) {
dynamic_mtu_enabled = true;
set_ul_mtu((rx_hdr->signal & MTU_SIZE_MASK) >> MTU_SIZE_SHIFT,
false);
} else {
set_ul_mtu(0, false);
}
spin_lock_irqsave(&bam_ch[rx_hdr->ch_id].lock, flags);
if (bam_ch_is_remote_open(rx_hdr->ch_id)) {
/*
* Receiving an open command for a channel that is already open
* is an invalid operation and likely signifies a significant
* issue within the A2 which should be caught immediately
* before it snowballs and the root cause is lost.
*/
panic("A2 sent invalid duplicate open for channel %d\n",
rx_hdr->ch_id);
}
bam_ch[rx_hdr->ch_id].status |= BAM_CH_REMOTE_OPEN;
bam_ch[rx_hdr->ch_id].num_tx_pkts = 0;
spin_unlock_irqrestore(&bam_ch[rx_hdr->ch_id].lock, flags);
ret = platform_device_add(bam_ch[rx_hdr->ch_id].pdev);
if (ret)
pr_err("%s: platform_device_add() error: %d\n",
__func__, ret);
mutex_unlock(&bam_pdev_mutexlock);
queue_rx();
}
static void handle_bam_mux_cmd(struct work_struct *work)
{
unsigned long flags;
struct bam_mux_hdr *rx_hdr;
struct rx_pkt_info *info;
struct sk_buff *rx_skb;
uint16_t sps_size;
info = container_of(work, struct rx_pkt_info, work);
rx_skb = info->skb;
dma_unmap_single(dma_dev, info->dma_address, info->len,
bam_ops->dma_from);
sps_size = info->sps_size;
kfree(info);
rx_hdr = (struct bam_mux_hdr *)rx_skb->data;
DBG_INC_READ_CNT(sizeof(struct bam_mux_hdr));
DBG("%s: magic %x signal %x cmd %d pad %d ch %d len %d\n", __func__,
rx_hdr->magic_num, rx_hdr->signal, rx_hdr->cmd,
rx_hdr->pad_len, rx_hdr->ch_id, rx_hdr->pkt_len);
if (rx_hdr->magic_num != BAM_MUX_HDR_MAGIC_NO) {
DMUX_LOG_KERR(
"%s: dropping invalid hdr. magic %x signal %x cmd %d pad %d ch %d len %d\n",
__func__, rx_hdr->magic_num, rx_hdr->signal,
rx_hdr->cmd, rx_hdr->pad_len, rx_hdr->ch_id,
rx_hdr->pkt_len);
dev_kfree_skb_any(rx_skb);
queue_rx();
return;
}
if (rx_hdr->ch_id >= BAM_DMUX_NUM_CHANNELS) {
DMUX_LOG_KERR(
"%s: dropping invalid LCID %d signal %x cmd %d pad %d ch %d len %d\n",
__func__, rx_hdr->ch_id, rx_hdr->signal, rx_hdr->cmd,
rx_hdr->pad_len, rx_hdr->ch_id, rx_hdr->pkt_len);
dev_kfree_skb_any(rx_skb);
queue_rx();
return;
}
switch (rx_hdr->cmd) {
case BAM_MUX_HDR_CMD_DATA:
if (rx_hdr->pkt_len == 0xffff)
rx_hdr->pkt_len = sps_size;
DBG_INC_READ_CNT(rx_hdr->pkt_len);
bam_mux_process_data(rx_skb);
break;
case BAM_MUX_HDR_CMD_OPEN:
BAM_DMUX_LOG("%s: opening cid %d PC enabled\n", __func__,
rx_hdr->ch_id);
handle_bam_mux_cmd_open(rx_hdr);
dev_kfree_skb_any(rx_skb);
break;
case BAM_MUX_HDR_CMD_OPEN_NO_A2_PC:
BAM_DMUX_LOG("%s: opening cid %d PC disabled\n", __func__,
rx_hdr->ch_id);
if (!a2_pc_disabled) {
a2_pc_disabled = 1;
ul_wakeup();
}
handle_bam_mux_cmd_open(rx_hdr);
dev_kfree_skb_any(rx_skb);
break;
case BAM_MUX_HDR_CMD_CLOSE:
/* probably should drop pending write */
BAM_DMUX_LOG("%s: closing cid %d\n", __func__,
rx_hdr->ch_id);
mutex_lock(&bam_pdev_mutexlock);
if (in_global_reset) {
BAM_DMUX_LOG("%s: close cid %d aborted due to ssr\n",
__func__, rx_hdr->ch_id);
mutex_unlock(&bam_pdev_mutexlock);
break;
}
spin_lock_irqsave(&bam_ch[rx_hdr->ch_id].lock, flags);
bam_ch[rx_hdr->ch_id].status &= ~BAM_CH_REMOTE_OPEN;
spin_unlock_irqrestore(&bam_ch[rx_hdr->ch_id].lock, flags);
platform_device_unregister(bam_ch[rx_hdr->ch_id].pdev);
bam_ch[rx_hdr->ch_id].pdev =
platform_device_alloc(bam_ch[rx_hdr->ch_id].name, 2);
if (!bam_ch[rx_hdr->ch_id].pdev)
pr_err("%s: platform_device_alloc failed\n", __func__);
mutex_unlock(&bam_pdev_mutexlock);
dev_kfree_skb_any(rx_skb);
queue_rx();
break;
default:
DMUX_LOG_KERR(
"%s: dropping invalid hdr. magic %x signal %x cmd %d pad %d ch %d len %d\n",
__func__, rx_hdr->magic_num, rx_hdr->signal,
rx_hdr->cmd, rx_hdr->pad_len, rx_hdr->ch_id,
rx_hdr->pkt_len);
dev_kfree_skb_any(rx_skb);
queue_rx();
return;
}
}
static int bam_mux_write_cmd(void *data, uint32_t len)
{
int rc;
struct tx_pkt_info *pkt;
dma_addr_t dma_address;
unsigned long flags;
pkt = kmalloc(sizeof(struct tx_pkt_info), GFP_ATOMIC);
if (pkt == NULL) {
pr_err("%s: mem alloc for tx_pkt_info failed\n", __func__);
rc = -ENOMEM;
return rc;
}
dma_address = dma_map_single(dma_dev, data, len,
bam_ops->dma_to);
if (!dma_address) {
pr_err("%s: dma_map_single() failed\n", __func__);
kfree(pkt);
rc = -ENOMEM;
return rc;
}
pkt->skb = (struct sk_buff *)(data);
pkt->len = len;
pkt->dma_address = dma_address;
pkt->is_cmd = 1;
set_tx_timestamp(pkt);
INIT_WORK(&pkt->work, bam_mux_write_done);
spin_lock_irqsave(&bam_tx_pool_spinlock, flags);
list_add_tail(&pkt->list_node, &bam_tx_pool);
rc = bam_ops->sps_transfer_one_ptr(bam_tx_pipe, dma_address, len,
pkt, SPS_IOVEC_FLAG_EOT);
if (rc) {
DMUX_LOG_KERR("%s sps_transfer_one failed rc=%d\n",
__func__, rc);
list_del(&pkt->list_node);
DBG_INC_TX_SPS_FAILURE_CNT();
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
dma_unmap_single(dma_dev, pkt->dma_address,
pkt->len,
bam_ops->dma_to);
kfree(pkt);
} else {
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
}
ul_packet_written = 1;
return rc;
}
static void bam_mux_write_done(struct work_struct *work)
{
struct sk_buff *skb;
struct bam_mux_hdr *hdr;
struct tx_pkt_info *info;
struct tx_pkt_info *info_expected;
unsigned long event_data;
unsigned long flags;
if (in_global_reset)
return;
info = container_of(work, struct tx_pkt_info, work);
spin_lock_irqsave(&bam_tx_pool_spinlock, flags);
info_expected = list_first_entry(&bam_tx_pool,
struct tx_pkt_info, list_node);
if (unlikely(info != info_expected)) {
struct tx_pkt_info *errant_pkt;
DMUX_LOG_KERR("%s: bam_tx_pool mismatch .next=%p,"
" list_node=%p, ts=%u.%09lu\n",
__func__, bam_tx_pool.next, &info->list_node,
info->ts_sec, info->ts_nsec
);
list_for_each_entry(errant_pkt, &bam_tx_pool, list_node) {
DMUX_LOG_KERR("%s: node=%p ts=%u.%09lu\n", __func__,
&errant_pkt->list_node, errant_pkt->ts_sec,
errant_pkt->ts_nsec);
}
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
BUG();
}
list_del(&info->list_node);
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
if (info->is_cmd) {
kfree(info->skb);
kfree(info);
return;
}
skb = info->skb;
kfree(info);
hdr = (struct bam_mux_hdr *)skb->data;
DBG_INC_WRITE_CNT(skb->len);
/* Restore skb for client */
skb_pull(skb, sizeof(*hdr));
if (hdr->pad_len)
skb_trim(skb, skb->len - hdr->pad_len);
event_data = (unsigned long)(skb);
spin_lock_irqsave(&bam_ch[hdr->ch_id].lock, flags);
bam_ch[hdr->ch_id].num_tx_pkts--;
spin_unlock_irqrestore(&bam_ch[hdr->ch_id].lock, flags);
if (bam_ch[hdr->ch_id].notify)
bam_ch[hdr->ch_id].notify(
bam_ch[hdr->ch_id].priv, BAM_DMUX_WRITE_DONE,
event_data);
else
dev_kfree_skb_any(skb);
}
int msm_bam_dmux_write(uint32_t id, struct sk_buff *skb)
{
int rc = 0;
struct bam_mux_hdr *hdr;
unsigned long flags;
struct sk_buff *new_skb = NULL;
dma_addr_t dma_address;
struct tx_pkt_info *pkt;
int rcu_id;
if (id >= BAM_DMUX_NUM_CHANNELS)
return -EINVAL;
if (!skb)
return -EINVAL;
if (!bam_mux_initialized)
return -ENODEV;
rcu_id = srcu_read_lock(&bam_dmux_srcu);
if (in_global_reset) {
BAM_DMUX_LOG("%s: In SSR... ch_id[%d]\n", __func__, id);
srcu_read_unlock(&bam_dmux_srcu, rcu_id);
return -EFAULT;
}
DBG("%s: writing to ch %d len %d\n", __func__, id, skb->len);
spin_lock_irqsave(&bam_ch[id].lock, flags);
if (!bam_ch_is_open(id)) {
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
pr_err("%s: port not open: %d\n", __func__, bam_ch[id].status);
srcu_read_unlock(&bam_dmux_srcu, rcu_id);
return -ENODEV;
}
if (bam_ch[id].use_wm &&
(bam_ch[id].num_tx_pkts >= HIGH_WATERMARK)) {
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
pr_err("%s: watermark exceeded: %d\n", __func__, id);
srcu_read_unlock(&bam_dmux_srcu, rcu_id);
return -EAGAIN;
}
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
read_lock(&ul_wakeup_lock);
if (!bam_is_connected) {
read_unlock(&ul_wakeup_lock);
ul_wakeup();
if (unlikely(in_global_reset == 1)) {
srcu_read_unlock(&bam_dmux_srcu, rcu_id);
return -EFAULT;
}
read_lock(&ul_wakeup_lock);
notify_all(BAM_DMUX_UL_CONNECTED, (unsigned long)(NULL));
}
/* if skb do not have any tailroom for padding,
copy the skb into a new expanded skb */
if ((skb->len & 0x3) && (skb_tailroom(skb) < (4 - (skb->len & 0x3)))) {
/* revisit, probably dev_alloc_skb and memcpy is effecient */
new_skb = skb_copy_expand(skb, skb_headroom(skb),
4 - (skb->len & 0x3), GFP_ATOMIC);
if (new_skb == NULL) {
pr_err("%s: cannot allocate skb\n", __func__);
goto write_fail;
}
dev_kfree_skb_any(skb);
skb = new_skb;
DBG_INC_WRITE_CPY(skb->len);
}
hdr = (struct bam_mux_hdr *)skb_push(skb, sizeof(struct bam_mux_hdr));
/* caller should allocate for hdr and padding
hdr is fine, padding is tricky */
hdr->magic_num = BAM_MUX_HDR_MAGIC_NO;
hdr->cmd = BAM_MUX_HDR_CMD_DATA;
hdr->signal = 0;
hdr->ch_id = id;
hdr->pkt_len = skb->len - sizeof(struct bam_mux_hdr);
if (skb->len & 0x3)
skb_put(skb, 4 - (skb->len & 0x3));
hdr->pad_len = skb->len - (sizeof(struct bam_mux_hdr) + hdr->pkt_len);
DBG("%s: data %p, tail %p skb len %d pkt len %d pad len %d\n",
__func__, skb->data, skb_tail_pointer(skb), skb->len,
hdr->pkt_len, hdr->pad_len);
pkt = kmalloc(sizeof(struct tx_pkt_info), GFP_ATOMIC);
if (pkt == NULL) {
pr_err("%s: mem alloc for tx_pkt_info failed\n", __func__);
goto write_fail2;
}
dma_address = dma_map_single(dma_dev, skb->data, skb->len,
bam_ops->dma_to);
if (!dma_address) {
pr_err("%s: dma_map_single() failed\n", __func__);
goto write_fail3;
}
pkt->skb = skb;
pkt->dma_address = dma_address;
pkt->is_cmd = 0;
set_tx_timestamp(pkt);
INIT_WORK(&pkt->work, bam_mux_write_done);
spin_lock_irqsave(&bam_tx_pool_spinlock, flags);
list_add_tail(&pkt->list_node, &bam_tx_pool);
rc = bam_ops->sps_transfer_one_ptr(bam_tx_pipe, dma_address, skb->len,
pkt, SPS_IOVEC_FLAG_EOT);
if (rc) {
DMUX_LOG_KERR("%s sps_transfer_one failed rc=%d\n",
__func__, rc);
list_del(&pkt->list_node);
DBG_INC_TX_SPS_FAILURE_CNT();
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
dma_unmap_single(dma_dev, pkt->dma_address,
pkt->skb->len, bam_ops->dma_to);
kfree(pkt);
if (new_skb)
dev_kfree_skb_any(new_skb);
} else {
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
spin_lock_irqsave(&bam_ch[id].lock, flags);
bam_ch[id].num_tx_pkts++;
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
}
ul_packet_written = 1;
read_unlock(&ul_wakeup_lock);
srcu_read_unlock(&bam_dmux_srcu, rcu_id);
return rc;
write_fail3:
kfree(pkt);
write_fail2:
skb_pull(skb, sizeof(struct bam_mux_hdr));
if (new_skb)
dev_kfree_skb_any(new_skb);
write_fail:
read_unlock(&ul_wakeup_lock);
srcu_read_unlock(&bam_dmux_srcu, rcu_id);
return -ENOMEM;
}
/**
* create_open_signal() - Generate a proper signal field for outgoing open cmds
*
* A properly constructed signal field of the mux header for opem commands semt
* to the remote side depend on what has been locally configured, and what has
* been received from the remote side. The byte value to code translations
* must match the valid values in set_rx_buffer_ring_pool() and set_dl_mtu().
*
* Return: A properly constructed signal field for an outgoing mux open command.
*/
static uint8_t create_open_signal(void)
{
uint8_t signal = 0;
uint8_t buff_count = 0;
uint8_t dl_size = 0;
if (!dynamic_mtu_enabled)
return signal;
signal = DYNAMIC_MTU_MASK;
switch (num_buffers) {
case SZ_256:
buff_count = 3;
break;
case SZ_128:
buff_count = 2;
break;
case SZ_64:
buff_count = 1;
break;
case SZ_32:
buff_count = 0;
break;
}
signal |= buff_count << DL_POOL_SIZE_SHIFT;
switch (dl_mtu) {
case SZ_16K:
dl_size = 3;
break;
case SZ_8K:
dl_size = 2;
break;
case SZ_4K:
dl_size = 1;
break;
case SZ_2K:
dl_size = 0;
break;
}
signal |= dl_size << MTU_SIZE_SHIFT;
return signal;
}
int msm_bam_dmux_open(uint32_t id, void *priv,
void (*notify)(void *, int, unsigned long))
{
struct bam_mux_hdr *hdr;
unsigned long flags;
int rc = 0;
DBG("%s: opening ch %d\n", __func__, id);
if (!bam_mux_initialized) {
DBG("%s: not inititialized\n", __func__);
return -ENODEV;
}
if (id >= BAM_DMUX_NUM_CHANNELS) {
pr_err("%s: invalid channel id %d\n", __func__, id);
return -EINVAL;
}
if (notify == NULL) {
pr_err("%s: notify function is NULL\n", __func__);
return -EINVAL;
}
hdr = kmalloc(sizeof(struct bam_mux_hdr), GFP_KERNEL);
if (hdr == NULL) {
pr_err("%s: hdr kmalloc failed. ch: %d\n", __func__, id);
return -ENOMEM;
}
spin_lock_irqsave(&bam_ch[id].lock, flags);
if (bam_ch_is_open(id)) {
DBG("%s: Already opened %d\n", __func__, id);
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
kfree(hdr);
goto open_done;
}
if (!bam_ch_is_remote_open(id)) {
DBG("%s: Remote not open; ch: %d\n", __func__, id);
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
kfree(hdr);
return -ENODEV;
}
bam_ch[id].notify = notify;
bam_ch[id].priv = priv;
bam_ch[id].status |= BAM_CH_LOCAL_OPEN;
bam_ch[id].num_tx_pkts = 0;
bam_ch[id].use_wm = 0;
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
notify(priv, BAM_DMUX_TRANSMIT_SIZE, ul_mtu);
read_lock(&ul_wakeup_lock);
if (!bam_is_connected) {
read_unlock(&ul_wakeup_lock);
ul_wakeup();
if (unlikely(in_global_reset == 1)) {
kfree(hdr);
return -EFAULT;
}
read_lock(&ul_wakeup_lock);
notify_all(BAM_DMUX_UL_CONNECTED, (unsigned long)(NULL));
}
hdr->magic_num = BAM_MUX_HDR_MAGIC_NO;
hdr->cmd = BAM_MUX_HDR_CMD_OPEN;
hdr->signal = create_open_signal();
hdr->ch_id = id;
hdr->pkt_len = 0;
hdr->pad_len = 0;
rc = bam_mux_write_cmd((void *)hdr, sizeof(struct bam_mux_hdr));
read_unlock(&ul_wakeup_lock);
open_done:
DBG("%s: opened ch %d\n", __func__, id);
return rc;
}
int msm_bam_dmux_close(uint32_t id)
{
struct bam_mux_hdr *hdr;
unsigned long flags;
int rc;
if (id >= BAM_DMUX_NUM_CHANNELS)
return -EINVAL;
DBG("%s: closing ch %d\n", __func__, id);
if (!bam_mux_initialized)
return -ENODEV;
read_lock(&ul_wakeup_lock);
if (!bam_is_connected && !bam_ch_is_in_reset(id)) {
read_unlock(&ul_wakeup_lock);
ul_wakeup();
if (unlikely(in_global_reset == 1))
return -EFAULT;
read_lock(&ul_wakeup_lock);
notify_all(BAM_DMUX_UL_CONNECTED, (unsigned long)(NULL));
}
spin_lock_irqsave(&bam_ch[id].lock, flags);
bam_ch[id].notify = NULL;
bam_ch[id].priv = NULL;
bam_ch[id].status &= ~BAM_CH_LOCAL_OPEN;
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
if (bam_ch_is_in_reset(id)) {
read_unlock(&ul_wakeup_lock);
bam_ch[id].status &= ~BAM_CH_IN_RESET;
return 0;
}
hdr = kmalloc(sizeof(struct bam_mux_hdr), GFP_ATOMIC);
if (hdr == NULL) {
pr_err("%s: hdr kmalloc failed. ch: %d\n", __func__, id);
read_unlock(&ul_wakeup_lock);
return -ENOMEM;
}
hdr->magic_num = BAM_MUX_HDR_MAGIC_NO;
hdr->cmd = BAM_MUX_HDR_CMD_CLOSE;
hdr->signal = 0;
hdr->ch_id = id;
hdr->pkt_len = 0;
hdr->pad_len = 0;
rc = bam_mux_write_cmd((void *)hdr, sizeof(struct bam_mux_hdr));
read_unlock(&ul_wakeup_lock);
DBG("%s: closed ch %d\n", __func__, id);
return rc;
}
int msm_bam_dmux_is_ch_full(uint32_t id)
{
unsigned long flags;
int ret;
if (id >= BAM_DMUX_NUM_CHANNELS)
return -EINVAL;
spin_lock_irqsave(&bam_ch[id].lock, flags);
bam_ch[id].use_wm = 1;
ret = bam_ch[id].num_tx_pkts >= HIGH_WATERMARK;
DBG("%s: ch %d num tx pkts=%d, HWM=%d\n", __func__,
id, bam_ch[id].num_tx_pkts, ret);
if (!bam_ch_is_local_open(id)) {
ret = -ENODEV;
pr_err("%s: port not open: %d\n", __func__, bam_ch[id].status);
}
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
return ret;
}
int msm_bam_dmux_is_ch_low(uint32_t id)
{
unsigned long flags;
int ret;
if (id >= BAM_DMUX_NUM_CHANNELS)
return -EINVAL;
spin_lock_irqsave(&bam_ch[id].lock, flags);
bam_ch[id].use_wm = 1;
ret = bam_ch[id].num_tx_pkts <= LOW_WATERMARK;
DBG("%s: ch %d num tx pkts=%d, LWM=%d\n", __func__,
id, bam_ch[id].num_tx_pkts, ret);
if (!bam_ch_is_local_open(id)) {
ret = -ENODEV;
pr_err("%s: port not open: %d\n", __func__, bam_ch[id].status);
}
spin_unlock_irqrestore(&bam_ch[id].lock, flags);
return ret;
}
static void rx_switch_to_interrupt_mode(void)
{
struct sps_connect cur_rx_conn;
struct sps_iovec iov;
struct rx_pkt_info *info;
int ret;
/*
* Attempt to enable interrupts - if this fails,
* continue polling and we will retry later.
*/
ret = bam_ops->sps_get_config_ptr(bam_rx_pipe, &cur_rx_conn);
if (ret) {
pr_err("%s: sps_get_config() failed %d\n", __func__, ret);
goto fail;
}
rx_register_event.options = SPS_O_EOT;
ret = bam_ops->sps_register_event_ptr(bam_rx_pipe, &rx_register_event);
if (ret) {
pr_err("%s: sps_register_event() failed %d\n", __func__, ret);
goto fail;
}
cur_rx_conn.options = SPS_O_AUTO_ENABLE |
SPS_O_EOT | SPS_O_ACK_TRANSFERS;
ret = bam_ops->sps_set_config_ptr(bam_rx_pipe, &cur_rx_conn);
if (ret) {
pr_err("%s: sps_set_config() failed %d\n", __func__, ret);
goto fail;
}
polling_mode = 0;
complete_all(&shutdown_completion);
release_wakelock();
/* handle any rx packets before interrupt was enabled */
while (bam_connection_is_active && !polling_mode) {
ret = bam_ops->sps_get_iovec_ptr(bam_rx_pipe, &iov);
if (ret) {
pr_err("%s: sps_get_iovec failed %d\n",
__func__, ret);
break;
}
if (iov.addr == 0)
break;
mutex_lock(&bam_rx_pool_mutexlock);
if (unlikely(list_empty(&bam_rx_pool))) {
DMUX_LOG_KERR("%s: have iovec %p but rx pool empty\n",
__func__, (void *)(uintptr_t)iov.addr);
mutex_unlock(&bam_rx_pool_mutexlock);
continue;
}
info = list_first_entry(&bam_rx_pool, struct rx_pkt_info,
list_node);
if (info->dma_address != iov.addr) {
DMUX_LOG_KERR("%s: iovec %p != dma %p\n",
__func__,
(void *)(uintptr_t)iov.addr,
(void *)(uintptr_t)info->dma_address);
list_for_each_entry(info, &bam_rx_pool, list_node) {
DMUX_LOG_KERR("%s: dma %p\n", __func__,
(void *)(uintptr_t)info->dma_address);
if (iov.addr == info->dma_address)
break;
}
}
BUG_ON(info->dma_address != iov.addr);
list_del(&info->list_node);
--bam_rx_pool_len;
mutex_unlock(&bam_rx_pool_mutexlock);
info->sps_size = iov.size;
handle_bam_mux_cmd(&info->work);
}
return;
fail:
pr_err("%s: reverting to polling\n", __func__);
if (no_cpu_affinity)
queue_work(bam_mux_rx_workqueue, &rx_timer_work);
else
queue_work_on(0, bam_mux_rx_workqueue, &rx_timer_work);
}
/**
* store_rx_timestamp() - store the current raw time as as a timestamp for when
* the last rx packet was processed
*/
static void store_rx_timestamp(void)
{
last_rx_pkt_timestamp = sched_clock();
}
/**
* log_rx_timestamp() - Log the stored rx pkt timestamp in a human readable
* format
*/
static void log_rx_timestamp(void)
{
unsigned long long t = last_rx_pkt_timestamp;
unsigned long nanosec_rem;
nanosec_rem = do_div(t, 1000000000U);
BAM_DMUX_LOG("Last rx pkt processed at [%6u.%09lu]\n", (unsigned)t,
nanosec_rem);
}
static void rx_timer_work_func(struct work_struct *work)
{
struct sps_iovec iov;
struct rx_pkt_info *info;
int inactive_cycles = 0;
int ret;
u32 buffs_unused, buffs_used;
BAM_DMUX_LOG("%s: polling start\n", __func__);
while (bam_connection_is_active) { /* timer loop */
++inactive_cycles;
while (bam_connection_is_active) { /* deplete queue loop */
if (in_global_reset) {
BAM_DMUX_LOG(
"%s: polling exit, global reset detected\n",
__func__);
return;
}
ret = bam_ops->sps_get_iovec_ptr(bam_rx_pipe, &iov);
if (ret) {
DMUX_LOG_KERR("%s: sps_get_iovec failed %d\n",
__func__, ret);
break;
}
if (iov.addr == 0)
break;
store_rx_timestamp();
inactive_cycles = 0;
mutex_lock(&bam_rx_pool_mutexlock);
if (unlikely(list_empty(&bam_rx_pool))) {
DMUX_LOG_KERR(
"%s: have iovec %p but rx pool empty\n",
__func__, (void *)(uintptr_t)iov.addr);
mutex_unlock(&bam_rx_pool_mutexlock);
continue;
}
info = list_first_entry(&bam_rx_pool,
struct rx_pkt_info, list_node);
if (info->dma_address != iov.addr) {
DMUX_LOG_KERR("%s: iovec %p != dma %p\n",
__func__,
(void *)(uintptr_t)iov.addr,
(void *)(uintptr_t)info->dma_address);
list_for_each_entry(info, &bam_rx_pool,
list_node) {
DMUX_LOG_KERR("%s: dma %p\n", __func__,
(void *)(uintptr_t)
info->dma_address);
if (iov.addr == info->dma_address)
break;
}
}
BUG_ON(info->dma_address != iov.addr);
list_del(&info->list_node);
--bam_rx_pool_len;
mutex_unlock(&bam_rx_pool_mutexlock);
info->sps_size = iov.size;
handle_bam_mux_cmd(&info->work);
}
if (inactive_cycles >= POLLING_INACTIVITY) {
BAM_DMUX_LOG("%s: polling exit, no data\n", __func__);
rx_switch_to_interrupt_mode();
break;
}
if (bam_adaptive_timer_enabled) {
usleep_range(rx_timer_interval, rx_timer_interval + 50);
ret = bam_ops->sps_get_unused_desc_num_ptr(bam_rx_pipe,
&buffs_unused);
if (ret) {
DMUX_LOG_KERR(
"%s: error getting num buffers unused after sleep\n",
__func__);
break;
}
buffs_used = num_buffers - buffs_unused;
if (buffs_unused == 0) {
rx_timer_interval = MIN_POLLING_SLEEP;
} else {
if (buffs_used > 0) {
rx_timer_interval =
(2 * num_buffers *
rx_timer_interval)/
(3 * buffs_used);
} else {
rx_timer_interval =
MAX_POLLING_SLEEP;
}
}
if (rx_timer_interval > MAX_POLLING_SLEEP)
rx_timer_interval = MAX_POLLING_SLEEP;
else if (rx_timer_interval < MIN_POLLING_SLEEP)
rx_timer_interval = MIN_POLLING_SLEEP;
} else {
usleep_range(POLLING_MIN_SLEEP, POLLING_MAX_SLEEP);
}
}
}
static void bam_mux_tx_notify(struct sps_event_notify *notify)
{
struct tx_pkt_info *pkt;
DBG("%s: event %d notified\n", __func__, notify->event_id);
if (in_global_reset)
return;
switch (notify->event_id) {
case SPS_EVENT_EOT:
pkt = notify->data.transfer.user;
if (!pkt->is_cmd)
dma_unmap_single(dma_dev, pkt->dma_address,
pkt->skb->len,
bam_ops->dma_to);
else
dma_unmap_single(dma_dev, pkt->dma_address,
pkt->len,
bam_ops->dma_to);
queue_work(bam_mux_tx_workqueue, &pkt->work);
break;
default:
pr_err("%s: recieved unexpected event id %d\n", __func__,
notify->event_id);
}
}
static void bam_mux_rx_notify(struct sps_event_notify *notify)
{
int ret;
struct sps_connect cur_rx_conn;
DBG("%s: event %d notified\n", __func__, notify->event_id);
if (in_global_reset)
return;
switch (notify->event_id) {
case SPS_EVENT_EOT:
/* attempt to disable interrupts in this pipe */
if (!polling_mode) {
ret = bam_ops->sps_get_config_ptr(bam_rx_pipe,
&cur_rx_conn);
if (ret) {
pr_err("%s: sps_get_config() failed %d, interrupts"
" not disabled\n", __func__, ret);
break;
}
cur_rx_conn.options = SPS_O_AUTO_ENABLE |
SPS_O_ACK_TRANSFERS | SPS_O_POLL;
ret = bam_ops->sps_set_config_ptr(bam_rx_pipe,
&cur_rx_conn);
if (ret) {
pr_err("%s: sps_set_config() failed %d, interrupts"
" not disabled\n", __func__, ret);
break;
}
INIT_COMPLETION(shutdown_completion);
grab_wakelock();
polling_mode = 1;
/*
* run on core 0 so that netif_rx() in rmnet uses only
* one queue if RPS enable use no_cpu_affinity
*/
if (no_cpu_affinity)
queue_work(bam_mux_rx_workqueue,
&rx_timer_work);
else
queue_work_on(0, bam_mux_rx_workqueue,
&rx_timer_work);
}
break;
default:
pr_err("%s: recieved unexpected event id %d\n", __func__,
notify->event_id);
}
}
#ifdef CONFIG_DEBUG_FS
static int debug_tbl(char *buf, int max)
{
int i = 0;
int j;
for (j = 0; j < BAM_DMUX_NUM_CHANNELS; ++j) {
i += scnprintf(buf + i, max - i,
"ch%02d local open=%s remote open=%s\n",
j, bam_ch_is_local_open(j) ? "Y" : "N",
bam_ch_is_remote_open(j) ? "Y" : "N");
}
return i;
}
static int debug_ul_pkt_cnt(char *buf, int max)
{
struct list_head *p;
unsigned long flags;
int n = 0;
spin_lock_irqsave(&bam_tx_pool_spinlock, flags);
__list_for_each(p, &bam_tx_pool) {
++n;
}
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
return scnprintf(buf, max, "Number of UL packets in flight: %d\n", n);
}
static int debug_stats(char *buf, int max)
{
int i = 0;
i += scnprintf(buf + i, max - i,
"skb read cnt: %u\n"
"skb write cnt: %u\n"
"skb copy cnt: %u\n"
"skb copy bytes: %u\n"
"sps tx failures: %u\n"
"sps tx stalls: %u\n"
"rx queue len: %d\n"
"a2 ack out cnt: %d\n"
"a2 ack in cnt: %d\n"
"a2 pwr cntl in: %d\n",
bam_dmux_read_cnt,
bam_dmux_write_cnt,
bam_dmux_write_cpy_cnt,
bam_dmux_write_cpy_bytes,
bam_dmux_tx_sps_failure_cnt,
bam_dmux_tx_stall_cnt,
bam_rx_pool_len,
atomic_read(&bam_dmux_ack_out_cnt),
atomic_read(&bam_dmux_ack_in_cnt),
atomic_read(&bam_dmux_a2_pwr_cntl_in_cnt)
);
return i;
}
#define DEBUG_BUFMAX 4096
static char debug_buffer[DEBUG_BUFMAX];
static ssize_t debug_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int (*fill)(char *buf, int max) = file->private_data;
int bsize = fill(debug_buffer, DEBUG_BUFMAX);
return simple_read_from_buffer(buf, count, ppos, debug_buffer, bsize);
}
static int debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations debug_ops = {
.read = debug_read,
.open = debug_open,
};
static void debug_create(const char *name, mode_t mode,
struct dentry *dent,
int (*fill)(char *buf, int max))
{
struct dentry *file;
file = debugfs_create_file(name, mode, dent, fill, &debug_ops);
if (IS_ERR(file))
pr_err("%s: debugfs create failed %d\n", __func__,
(int)PTR_ERR(file));
}
#endif
static void notify_all(int event, unsigned long data)
{
int i;
unsigned long flags;
struct list_head *temp;
struct outside_notify_func *func;
void (*notify)(void *, int, unsigned long);
void *priv;
BAM_DMUX_LOG("%s: event=%d, data=%lu\n", __func__, event, data);
for (i = 0; i < BAM_DMUX_NUM_CHANNELS; ++i) {
notify = NULL;
priv = NULL;
spin_lock_irqsave(&bam_ch[i].lock, flags);
if (bam_ch_is_open(i)) {
notify = bam_ch[i].notify;
priv = bam_ch[i].priv;
}
spin_unlock_irqrestore(&bam_ch[i].lock, flags);
if (notify)
notify(priv, event, data);
}
__list_for_each(temp, &bam_other_notify_funcs) {
func = container_of(temp, struct outside_notify_func,
list_node);
func->notify(func->priv, event, data);
}
}
static void kickoff_ul_wakeup_func(struct work_struct *work)
{
read_lock(&ul_wakeup_lock);
if (!bam_is_connected) {
read_unlock(&ul_wakeup_lock);
ul_wakeup();
if (unlikely(in_global_reset == 1))
return;
read_lock(&ul_wakeup_lock);
ul_packet_written = 1;
notify_all(BAM_DMUX_UL_CONNECTED, (unsigned long)(NULL));
}
read_unlock(&ul_wakeup_lock);
}
int msm_bam_dmux_kickoff_ul_wakeup(void)
{
int is_connected;
read_lock(&ul_wakeup_lock);
ul_packet_written = 1;
is_connected = bam_is_connected;
if (!is_connected)
queue_work(bam_mux_tx_workqueue, &kickoff_ul_wakeup);
read_unlock(&ul_wakeup_lock);
return is_connected;
}
static void power_vote(int vote)
{
BAM_DMUX_LOG("%s: curr=%d, vote=%d\n", __func__,
bam_dmux_uplink_vote, vote);
if (bam_dmux_uplink_vote == vote)
BAM_DMUX_LOG("%s: warning - duplicate power vote\n", __func__);
bam_dmux_uplink_vote = vote;
if (vote)
bam_ops->smsm_change_state_ptr(SMSM_APPS_STATE,
0, SMSM_A2_POWER_CONTROL);
else
bam_ops->smsm_change_state_ptr(SMSM_APPS_STATE,
SMSM_A2_POWER_CONTROL, 0);
}
/*
* @note: Must be called with ul_wakeup_lock locked.
*/
static inline void ul_powerdown(void)
{
BAM_DMUX_LOG("%s: powerdown\n", __func__);
verify_tx_queue_is_empty(__func__);
if (a2_pc_disabled) {
wait_for_dfab = 1;
INIT_COMPLETION(dfab_unvote_completion);
release_wakelock();
} else {
wait_for_ack = 1;
INIT_COMPLETION(ul_wakeup_ack_completion);
power_vote(0);
}
bam_is_connected = 0;
notify_all(BAM_DMUX_UL_DISCONNECTED, (unsigned long)(NULL));
}
static inline void ul_powerdown_finish(void)
{
if (a2_pc_disabled && wait_for_dfab) {
unvote_dfab();
complete_all(&dfab_unvote_completion);
wait_for_dfab = 0;
}
}
/*
* Votes for UL power and returns current power state.
*
* @returns true if currently connected
*/
int msm_bam_dmux_ul_power_vote(void)
{
int is_connected;
read_lock(&ul_wakeup_lock);
atomic_inc(&ul_ondemand_vote);
is_connected = bam_is_connected;
if (!is_connected)
queue_work(bam_mux_tx_workqueue, &kickoff_ul_wakeup);
read_unlock(&ul_wakeup_lock);
return is_connected;
}
/*
* Unvotes for UL power.
*
* @returns true if vote count is 0 (UL shutdown possible)
*/
int msm_bam_dmux_ul_power_unvote(void)
{
int vote;
read_lock(&ul_wakeup_lock);
vote = atomic_dec_return(&ul_ondemand_vote);
if (unlikely(vote) < 0)
DMUX_LOG_KERR("%s: invalid power vote %d\n", __func__, vote);
read_unlock(&ul_wakeup_lock);
return vote == 0;
}
int msm_bam_dmux_reg_notify(void *priv,
void (*notify)(void *priv, int event_type,
unsigned long data))
{
struct outside_notify_func *func;
if (!notify)
return -EINVAL;
func = kmalloc(sizeof(struct outside_notify_func), GFP_KERNEL);
if (!func)
return -ENOMEM;
func->notify = notify;
func->priv = priv;
list_add(&func->list_node, &bam_other_notify_funcs);
return 0;
}
static void ul_timeout(struct work_struct *work)
{
unsigned long flags;
int ret;
if (in_global_reset)
return;
ret = write_trylock_irqsave(&ul_wakeup_lock, flags);
if (!ret) { /* failed to grab lock, reschedule and bail */
schedule_delayed_work(&ul_timeout_work,
msecs_to_jiffies(UL_TIMEOUT_DELAY));
return;
}
if (bam_is_connected) {
if (!ul_packet_written) {
spin_lock(&bam_tx_pool_spinlock);
if (!list_empty(&bam_tx_pool)) {
struct tx_pkt_info *info;
info = list_first_entry(&bam_tx_pool,
struct tx_pkt_info, list_node);
DMUX_LOG_KERR("%s: UL delayed ts=%u.%09lu\n",
__func__, info->ts_sec, info->ts_nsec);
DBG_INC_TX_STALL_CNT();
ul_packet_written = 1;
}
spin_unlock(&bam_tx_pool_spinlock);
}
if (ul_packet_written || atomic_read(&ul_ondemand_vote)) {
BAM_DMUX_LOG("%s: pkt written %d\n",
__func__, ul_packet_written);
ul_packet_written = 0;
schedule_delayed_work(&ul_timeout_work,
msecs_to_jiffies(UL_TIMEOUT_DELAY));
} else {
ul_powerdown();
}
}
write_unlock_irqrestore(&ul_wakeup_lock, flags);
ul_powerdown_finish();
}
static int ssrestart_check(void)
{
int ret = 0;
if (in_global_reset) {
DMUX_LOG_KERR("%s: already in SSR\n",
__func__);
return 1;
}
DMUX_LOG_KERR(
"%s: fatal modem interaction: BAM DMUX disabled for SSR\n",
__func__);
in_global_reset = 1;
ret = subsystem_restart("modem");
if (ret == -ENODEV)
panic("modem subsystem restart failed\n");
return 1;
}
static void ul_wakeup(void)
{
int ret;
int do_vote_dfab = 0;
mutex_lock(&wakeup_lock);
if (bam_is_connected) { /* bam got connected before lock grabbed */
BAM_DMUX_LOG("%s Already awake\n", __func__);
mutex_unlock(&wakeup_lock);
return;
}
/*
* if this gets hit, that means restart_notifier_cb() has started
* but probably not finished, thus we know SSR has happened, but
* haven't been able to send that info to our clients yet.
* in that case, abort the ul_wakeup() so that we don't undo any
* work restart_notifier_cb() has done. The clients will be notified
* shortly. No cleanup necessary (reschedule the wakeup) as our and
* their SSR handling will cover it
*/
if (unlikely(in_global_reset == 1)) {
mutex_unlock(&wakeup_lock);
return;
}
/*
* if someone is voting for UL before bam is inited (modem up first
* time), set flag for init to kickoff ul wakeup once bam is inited
*/
mutex_lock(&delayed_ul_vote_lock);
if (unlikely(!bam_mux_initialized)) {
need_delayed_ul_vote = 1;
mutex_unlock(&delayed_ul_vote_lock);
mutex_unlock(&wakeup_lock);
return;
}
mutex_unlock(&delayed_ul_vote_lock);
if (a2_pc_disabled) {
/*
* don't grab the wakelock the first time because it is
* already grabbed when a2 powers on
*/
if (likely(a2_pc_disabled_wakelock_skipped)) {
grab_wakelock();
do_vote_dfab = 1; /* vote must occur after wait */
} else {
a2_pc_disabled_wakelock_skipped = 1;
}
if (wait_for_dfab) {
ret = wait_for_completion_timeout(
&dfab_unvote_completion,
msecs_to_jiffies(1000));
BUG_ON(ret == 0);
}
if (likely(do_vote_dfab))
vote_dfab();
schedule_delayed_work(&ul_timeout_work,
msecs_to_jiffies(UL_TIMEOUT_DELAY));
bam_is_connected = 1;
mutex_unlock(&wakeup_lock);
return;
}
/*
* must wait for the previous power down request to have been acked
* chances are it already came in and this will just fall through
* instead of waiting
*/
if (wait_for_ack) {
BAM_DMUX_LOG("%s waiting for previous ack\n", __func__);
ret = wait_for_completion_timeout(
&ul_wakeup_ack_completion,
msecs_to_jiffies(UL_WAKEUP_TIMEOUT_MS));
wait_for_ack = 0;
if (unlikely(ret == 0) && ssrestart_check()) {
mutex_unlock(&wakeup_lock);
BAM_DMUX_LOG("%s timeout previous ack\n", __func__);
return;
}
}
INIT_COMPLETION(ul_wakeup_ack_completion);
power_vote(1);
BAM_DMUX_LOG("%s waiting for wakeup ack\n", __func__);
ret = wait_for_completion_timeout(&ul_wakeup_ack_completion,
msecs_to_jiffies(UL_WAKEUP_TIMEOUT_MS));
if (unlikely(ret == 0) && ssrestart_check()) {
mutex_unlock(&wakeup_lock);
BAM_DMUX_LOG("%s timeout wakeup ack\n", __func__);
return;
}
BAM_DMUX_LOG("%s waiting completion\n", __func__);
ret = wait_for_completion_timeout(&bam_connection_completion,
msecs_to_jiffies(UL_WAKEUP_TIMEOUT_MS));
if (unlikely(ret == 0) && ssrestart_check()) {
mutex_unlock(&wakeup_lock);
BAM_DMUX_LOG("%s timeout power on\n", __func__);
return;
}
bam_is_connected = 1;
BAM_DMUX_LOG("%s complete\n", __func__);
schedule_delayed_work(&ul_timeout_work,
msecs_to_jiffies(UL_TIMEOUT_DELAY));
mutex_unlock(&wakeup_lock);
}
static void reconnect_to_bam(void)
{
int i;
in_global_reset = 0;
in_ssr = 0;
vote_dfab();
if (ssr_skipped_disconnect) {
/* delayed to here to prevent bus stall */
bam_ops->sps_disconnect_ptr(bam_tx_pipe);
bam_ops->sps_disconnect_ptr(bam_rx_pipe);
memset(rx_desc_mem_buf.base, 0, rx_desc_mem_buf.size);
memset(tx_desc_mem_buf.base, 0, tx_desc_mem_buf.size);
}
ssr_skipped_disconnect = 0;
i = bam_ops->sps_device_reset_ptr(a2_device_handle);
if (i)
pr_err("%s: device reset failed rc = %d\n", __func__,
i);
i = bam_ops->sps_connect_ptr(bam_tx_pipe, &tx_connection);
if (i)
pr_err("%s: tx connection failed rc = %d\n", __func__,
i);
i = bam_ops->sps_connect_ptr(bam_rx_pipe, &rx_connection);
if (i)
pr_err("%s: rx connection failed rc = %d\n", __func__,
i);
i = bam_ops->sps_register_event_ptr(bam_tx_pipe,
&tx_register_event);
if (i)
pr_err("%s: tx event reg failed rc = %d\n", __func__,
i);
i = bam_ops->sps_register_event_ptr(bam_rx_pipe,
&rx_register_event);
if (i)
pr_err("%s: rx event reg failed rc = %d\n", __func__,
i);
bam_connection_is_active = 1;
if (polling_mode)
rx_switch_to_interrupt_mode();
toggle_apps_ack();
complete_all(&bam_connection_completion);
queue_rx();
}
static void disconnect_to_bam(void)
{
struct list_head *node;
struct rx_pkt_info *info;
unsigned long flags;
unsigned long time_remaining;
if (!in_global_reset) {
time_remaining = wait_for_completion_timeout(
&shutdown_completion,
msecs_to_jiffies(SHUTDOWN_TIMEOUT_MS));
if (time_remaining == 0) {
DMUX_LOG_KERR("%s: shutdown completion timed out\n",
__func__);
log_rx_timestamp();
ssrestart_check();
}
}
bam_connection_is_active = 0;
/* handle disconnect during active UL */
write_lock_irqsave(&ul_wakeup_lock, flags);
if (bam_is_connected) {
BAM_DMUX_LOG("%s: UL active - forcing powerdown\n", __func__);
ul_powerdown();
}
write_unlock_irqrestore(&ul_wakeup_lock, flags);
ul_powerdown_finish();
/* tear down BAM connection */
INIT_COMPLETION(bam_connection_completion);
/* in_ssr documentation/assumptions found in restart_notifier_cb */
if (likely(!in_ssr)) {
BAM_DMUX_LOG("%s: disconnect tx\n", __func__);
bam_ops->sps_disconnect_ptr(bam_tx_pipe);
BAM_DMUX_LOG("%s: disconnect rx\n", __func__);
bam_ops->sps_disconnect_ptr(bam_rx_pipe);
memset(rx_desc_mem_buf.base, 0, rx_desc_mem_buf.size);
memset(tx_desc_mem_buf.base, 0, tx_desc_mem_buf.size);
BAM_DMUX_LOG("%s: device reset\n", __func__);
bam_ops->sps_device_reset_ptr(a2_device_handle);
} else {
ssr_skipped_disconnect = 1;
}
unvote_dfab();
mutex_lock(&bam_rx_pool_mutexlock);
while (!list_empty(&bam_rx_pool)) {
node = bam_rx_pool.next;
list_del(node);
info = container_of(node, struct rx_pkt_info, list_node);
dma_unmap_single(dma_dev, info->dma_address, info->len,
bam_ops->dma_from);
dev_kfree_skb_any(info->skb);
kfree(info);
}
bam_rx_pool_len = 0;
mutex_unlock(&bam_rx_pool_mutexlock);
toggle_apps_ack();
verify_tx_queue_is_empty(__func__);
}
static void vote_dfab(void)
{
int rc;
BAM_DMUX_LOG("%s\n", __func__);
mutex_lock(&dfab_status_lock);
if (dfab_is_on) {
BAM_DMUX_LOG("%s: dfab is already on\n", __func__);
mutex_unlock(&dfab_status_lock);
return;
}
if (dfab_clk) {
rc = clk_prepare_enable(dfab_clk);
if (rc)
DMUX_LOG_KERR("bam_dmux vote for dfab failed rc = %d\n",
rc);
}
if (xo_clk) {
rc = clk_prepare_enable(xo_clk);
if (rc)
DMUX_LOG_KERR("bam_dmux vote for xo failed rc = %d\n",
rc);
}
dfab_is_on = 1;
mutex_unlock(&dfab_status_lock);
}
static void unvote_dfab(void)
{
BAM_DMUX_LOG("%s\n", __func__);
mutex_lock(&dfab_status_lock);
if (!dfab_is_on) {
DMUX_LOG_KERR("%s: dfab is already off\n", __func__);
dump_stack();
mutex_unlock(&dfab_status_lock);
return;
}
if (dfab_clk)
clk_disable_unprepare(dfab_clk);
if (xo_clk)
clk_disable_unprepare(xo_clk);
dfab_is_on = 0;
mutex_unlock(&dfab_status_lock);
}
/* reference counting wrapper around wakelock */
static void grab_wakelock(void)
{
unsigned long flags;
spin_lock_irqsave(&wakelock_reference_lock, flags);
BAM_DMUX_LOG("%s: ref count = %d\n", __func__,
wakelock_reference_count);
if (wakelock_reference_count == 0)
wake_lock(&bam_wakelock);
++wakelock_reference_count;
spin_unlock_irqrestore(&wakelock_reference_lock, flags);
}
static void release_wakelock(void)
{
unsigned long flags;
spin_lock_irqsave(&wakelock_reference_lock, flags);
if (wakelock_reference_count == 0) {
DMUX_LOG_KERR("%s: bam_dmux wakelock not locked\n", __func__);
dump_stack();
spin_unlock_irqrestore(&wakelock_reference_lock, flags);
return;
}
BAM_DMUX_LOG("%s: ref count = %d\n", __func__,
wakelock_reference_count);
--wakelock_reference_count;
if (wakelock_reference_count == 0)
wake_unlock(&bam_wakelock);
spin_unlock_irqrestore(&wakelock_reference_lock, flags);
}
static int restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *data)
{
int i;
struct list_head *node;
struct tx_pkt_info *info;
int temp_remote_status;
unsigned long flags;
/*
* Bam_dmux counts on the fact that the BEFORE_SHUTDOWN level of
* notifications are guarenteed to execute before the AFTER_SHUTDOWN
* level of notifications, and that BEFORE_SHUTDOWN always occurs in
* all SSR events, no matter what triggered the SSR. Also, bam_dmux
* assumes that SMD does its SSR processing in the AFTER_SHUTDOWN level
* thus bam_dmux is guarenteed to detect SSR before SMD, since the
* callbacks for all the drivers within the AFTER_SHUTDOWN level could
* occur in any order. Bam_dmux uses this knowledge to skip accessing
* the bam hardware when disconnect_to_bam() is triggered by SMD's SSR
* processing. We do not wat to access the bam hardware during SSR
* because a watchdog crash from a bus stall would likely occur.
*/
if (code == SUBSYS_BEFORE_SHUTDOWN) {
BAM_DMUX_LOG("%s: begin\n", __func__);
in_global_reset = 1;
in_ssr = 1;
/* wait till all bam_dmux writes completes */
synchronize_srcu(&bam_dmux_srcu);
BAM_DMUX_LOG("%s: ssr signaling complete\n", __func__);
flush_workqueue(bam_mux_rx_workqueue);
}
if (code != SUBSYS_AFTER_SHUTDOWN)
return NOTIFY_DONE;
/* Handle uplink Powerdown */
write_lock_irqsave(&ul_wakeup_lock, flags);
if (bam_is_connected) {
ul_powerdown();
wait_for_ack = 0;
}
/*
* if modem crash during ul_wakeup(), power_vote is 1, needs to be
* reset to 0. harmless if bam_is_connected check above passes
*/
power_vote(0);
write_unlock_irqrestore(&ul_wakeup_lock, flags);
ul_powerdown_finish();
a2_pc_disabled = 0;
a2_pc_disabled_wakelock_skipped = 0;
process_dynamic_mtu(false);
set_ul_mtu(0, true);
dynamic_mtu_enabled = false;
/* Cleanup Channel States */
mutex_lock(&bam_pdev_mutexlock);
for (i = 0; i < BAM_DMUX_NUM_CHANNELS; ++i) {
temp_remote_status = bam_ch_is_remote_open(i);
bam_ch[i].status &= ~BAM_CH_REMOTE_OPEN;
bam_ch[i].num_tx_pkts = 0;
if (bam_ch_is_local_open(i))
bam_ch[i].status |= BAM_CH_IN_RESET;
if (temp_remote_status) {
platform_device_unregister(bam_ch[i].pdev);
bam_ch[i].pdev = platform_device_alloc(
bam_ch[i].name, 2);
}
}
mutex_unlock(&bam_pdev_mutexlock);
/* Cleanup pending UL data */
spin_lock_irqsave(&bam_tx_pool_spinlock, flags);
while (!list_empty(&bam_tx_pool)) {
node = bam_tx_pool.next;
list_del(node);
info = container_of(node, struct tx_pkt_info,
list_node);
if (!info->is_cmd) {
dma_unmap_single(dma_dev, info->dma_address,
info->skb->len,
bam_ops->dma_to);
dev_kfree_skb_any(info->skb);
} else {
dma_unmap_single(dma_dev, info->dma_address,
info->len,
bam_ops->dma_to);
kfree(info->skb);
}
kfree(info);
}
spin_unlock_irqrestore(&bam_tx_pool_spinlock, flags);
BAM_DMUX_LOG("%s: complete\n", __func__);
return NOTIFY_DONE;
}
static int bam_init(void)
{
unsigned long h;
dma_addr_t dma_addr;
int ret;
void *a2_virt_addr;
int skip_iounmap = 0;
in_global_reset = 0;
in_ssr = 0;
vote_dfab();
/* init BAM */
a2_virt_addr = ioremap_nocache(a2_phys_base, a2_phys_size);
if (!a2_virt_addr) {
pr_err("%s: ioremap failed\n", __func__);
ret = -ENOMEM;
goto ioremap_failed;
}
a2_props.phys_addr = a2_phys_base;
a2_props.virt_addr = a2_virt_addr;
a2_props.virt_size = a2_phys_size;
a2_props.irq = a2_bam_irq;
a2_props.options = SPS_BAM_OPT_IRQ_WAKEUP;
a2_props.num_pipes = A2_NUM_PIPES;
a2_props.summing_threshold = A2_SUMMING_THRESHOLD;
a2_props.constrained_logging = true;
a2_props.logging_number = 1;
if (satellite_mode)
a2_props.manage = SPS_BAM_MGR_DEVICE_REMOTE;
/* need to free on tear down */
ret = bam_ops->sps_register_bam_device_ptr(&a2_props, &h);
if (ret < 0) {
pr_err("%s: register bam error %d\n", __func__, ret);
goto register_bam_failed;
}
a2_device_handle = h;
bam_tx_pipe = bam_ops->sps_alloc_endpoint_ptr();
if (bam_tx_pipe == NULL) {
pr_err("%s: tx alloc endpoint failed\n", __func__);
ret = -ENOMEM;
goto tx_alloc_endpoint_failed;
}
ret = bam_ops->sps_get_config_ptr(bam_tx_pipe, &tx_connection);
if (ret) {
pr_err("%s: tx get config failed %d\n", __func__, ret);
goto tx_get_config_failed;
}
tx_connection.source = SPS_DEV_HANDLE_MEM;
tx_connection.src_pipe_index = 0;
tx_connection.destination = h;
tx_connection.dest_pipe_index = 4;
tx_connection.mode = SPS_MODE_DEST;
tx_connection.options = SPS_O_AUTO_ENABLE | SPS_O_EOT;
tx_desc_mem_buf.size = 0x800; /* 2k */
tx_desc_mem_buf.base = dma_alloc_coherent(dma_dev, tx_desc_mem_buf.size,
&dma_addr, 0);
if (tx_desc_mem_buf.base == NULL) {
pr_err("%s: tx memory alloc failed\n", __func__);
ret = -ENOMEM;
goto tx_get_config_failed;
}
tx_desc_mem_buf.phys_base = dma_addr;
memset(tx_desc_mem_buf.base, 0x0, tx_desc_mem_buf.size);
tx_connection.desc = tx_desc_mem_buf;
tx_connection.event_thresh = 0x10;
ret = bam_ops->sps_connect_ptr(bam_tx_pipe, &tx_connection);
if (ret < 0) {
pr_err("%s: tx connect error %d\n", __func__, ret);
goto tx_connect_failed;
}
bam_rx_pipe = bam_ops->sps_alloc_endpoint_ptr();
if (bam_rx_pipe == NULL) {
pr_err("%s: rx alloc endpoint failed\n", __func__);
ret = -ENOMEM;
goto rx_alloc_endpoint_failed;
}
ret = bam_ops->sps_get_config_ptr(bam_rx_pipe, &rx_connection);
if (ret) {
pr_err("%s: rx get config failed %d\n", __func__, ret);
goto rx_get_config_failed;
}
rx_connection.source = h;
rx_connection.src_pipe_index = 5;
rx_connection.destination = SPS_DEV_HANDLE_MEM;
rx_connection.dest_pipe_index = 1;
rx_connection.mode = SPS_MODE_SRC;
rx_connection.options = SPS_O_AUTO_ENABLE | SPS_O_EOT |
SPS_O_ACK_TRANSFERS;
rx_desc_mem_buf.size = 0x800; /* 2k */
rx_desc_mem_buf.base = dma_alloc_coherent(dma_dev, rx_desc_mem_buf.size,
&dma_addr, 0);
if (rx_desc_mem_buf.base == NULL) {
pr_err("%s: rx memory alloc failed\n", __func__);
ret = -ENOMEM;
goto rx_mem_failed;
}
rx_desc_mem_buf.phys_base = dma_addr;
memset(rx_desc_mem_buf.base, 0x0, rx_desc_mem_buf.size);
rx_connection.desc = rx_desc_mem_buf;
rx_connection.event_thresh = 0x10;
ret = bam_ops->sps_connect_ptr(bam_rx_pipe, &rx_connection);
if (ret < 0) {
pr_err("%s: rx connect error %d\n", __func__, ret);
goto rx_connect_failed;
}
tx_register_event.options = SPS_O_EOT;
tx_register_event.mode = SPS_TRIGGER_CALLBACK;
tx_register_event.xfer_done = NULL;
tx_register_event.callback = bam_mux_tx_notify;
tx_register_event.user = NULL;
ret = bam_ops->sps_register_event_ptr(bam_tx_pipe, &tx_register_event);
if (ret < 0) {
pr_err("%s: tx register event error %d\n", __func__, ret);
goto rx_event_reg_failed;
}
rx_register_event.options = SPS_O_EOT;
rx_register_event.mode = SPS_TRIGGER_CALLBACK;
rx_register_event.xfer_done = NULL;
rx_register_event.callback = bam_mux_rx_notify;
rx_register_event.user = NULL;
ret = bam_ops->sps_register_event_ptr(bam_rx_pipe, &rx_register_event);
if (ret < 0) {
pr_err("%s: tx register event error %d\n", __func__, ret);
goto rx_event_reg_failed;
}
mutex_lock(&delayed_ul_vote_lock);
bam_mux_initialized = 1;
if (need_delayed_ul_vote) {
need_delayed_ul_vote = 0;
msm_bam_dmux_kickoff_ul_wakeup();
}
mutex_unlock(&delayed_ul_vote_lock);
toggle_apps_ack();
bam_connection_is_active = 1;
complete_all(&bam_connection_completion);
queue_rx();
return 0;
rx_event_reg_failed:
bam_ops->sps_disconnect_ptr(bam_rx_pipe);
rx_connect_failed:
dma_free_coherent(dma_dev, rx_desc_mem_buf.size, rx_desc_mem_buf.base,
rx_desc_mem_buf.phys_base);
rx_mem_failed:
rx_get_config_failed:
bam_ops->sps_free_endpoint_ptr(bam_rx_pipe);
rx_alloc_endpoint_failed:
bam_ops->sps_disconnect_ptr(bam_tx_pipe);
tx_connect_failed:
dma_free_coherent(dma_dev, tx_desc_mem_buf.size, tx_desc_mem_buf.base,
tx_desc_mem_buf.phys_base);
tx_get_config_failed:
bam_ops->sps_free_endpoint_ptr(bam_tx_pipe);
tx_alloc_endpoint_failed:
bam_ops->sps_deregister_bam_device_ptr(h);
/*
* sps_deregister_bam_device() calls iounmap. calling iounmap on the
* same handle below will cause a crash, so skip it if we've freed
* the handle here.
*/
skip_iounmap = 1;
register_bam_failed:
if (!skip_iounmap)
iounmap(a2_virt_addr);
ioremap_failed:
/*destroy_workqueue(bam_mux_workqueue);*/
return ret;
}
static void toggle_apps_ack(void)
{
static unsigned int clear_bit; /* 0 = set the bit, else clear bit */
if (in_global_reset) {
BAM_DMUX_LOG("%s: skipped due to SSR\n", __func__);
return;
}
BAM_DMUX_LOG("%s: apps ack %d->%d\n", __func__,
clear_bit & 0x1, ~clear_bit & 0x1);
bam_ops->smsm_change_state_ptr(SMSM_APPS_STATE,
clear_bit & SMSM_A2_POWER_CONTROL_ACK,
~clear_bit & SMSM_A2_POWER_CONTROL_ACK);
clear_bit = ~clear_bit;
DBG_INC_ACK_OUT_CNT();
}
static void bam_dmux_smsm_cb(void *priv, uint32_t old_state, uint32_t new_state)
{
static int last_processed_state;
mutex_lock(&smsm_cb_lock);
bam_dmux_power_state = new_state & SMSM_A2_POWER_CONTROL ? 1 : 0;
DBG_INC_A2_POWER_CONTROL_IN_CNT();
BAM_DMUX_LOG("%s: 0x%08x -> 0x%08x\n", __func__, old_state,
new_state);
if (last_processed_state == (new_state & SMSM_A2_POWER_CONTROL)) {
BAM_DMUX_LOG("%s: already processed this state\n", __func__);
mutex_unlock(&smsm_cb_lock);
return;
}
last_processed_state = new_state & SMSM_A2_POWER_CONTROL;
if (bam_mux_initialized && new_state & SMSM_A2_POWER_CONTROL) {
BAM_DMUX_LOG("%s: reconnect\n", __func__);
grab_wakelock();
reconnect_to_bam();
} else if (bam_mux_initialized &&
!(new_state & SMSM_A2_POWER_CONTROL)) {
BAM_DMUX_LOG("%s: disconnect\n", __func__);
disconnect_to_bam();
release_wakelock();
} else if (new_state & SMSM_A2_POWER_CONTROL) {
BAM_DMUX_LOG("%s: init\n", __func__);
grab_wakelock();
bam_init();
} else {
BAM_DMUX_LOG("%s: bad state change\n", __func__);
pr_err("%s: unsupported state change\n", __func__);
}
mutex_unlock(&smsm_cb_lock);
}
static void bam_dmux_smsm_ack_cb(void *priv, uint32_t old_state,
uint32_t new_state)
{
DBG_INC_ACK_IN_CNT();
BAM_DMUX_LOG("%s: 0x%08x -> 0x%08x\n", __func__, old_state,
new_state);
complete_all(&ul_wakeup_ack_completion);
}
/**
* msm_bam_dmux_set_bam_ops() - sets the bam_ops
* @ops: bam_ops_if to set
*
* Sets bam_ops to allow switching of runtime behavior. Preconditon, bam dmux
* must be in an idle state. If input ops is NULL, then bam_ops will be
* restored to their default state.
*/
void msm_bam_dmux_set_bam_ops(struct bam_ops_if *ops)
{
if (ops != NULL)
bam_ops = ops;
else
bam_ops = &bam_default_ops;
}
EXPORT_SYMBOL(msm_bam_dmux_set_bam_ops);
/**
* msm_bam_dmux_deinit() - puts bam dmux into a deinited state
*
* Puts bam dmux into a deinitialized state by simulating an ssr.
*/
void msm_bam_dmux_deinit(void)
{
restart_notifier_cb(NULL, SUBSYS_BEFORE_SHUTDOWN, NULL);
restart_notifier_cb(NULL, SUBSYS_AFTER_SHUTDOWN, NULL);
in_global_reset = 0;
in_ssr = 0;
}
EXPORT_SYMBOL(msm_bam_dmux_deinit);
/**
* msm_bam_dmux_reinit() - reinitializes bam dmux
*/
void msm_bam_dmux_reinit(void)
{
bam_mux_initialized = 0;
bam_ops->smsm_state_cb_register_ptr(SMSM_MODEM_STATE,
SMSM_A2_POWER_CONTROL,
bam_dmux_smsm_cb, NULL);
bam_ops->smsm_state_cb_register_ptr(SMSM_MODEM_STATE,
SMSM_A2_POWER_CONTROL_ACK,
bam_dmux_smsm_ack_cb, NULL);
}
EXPORT_SYMBOL(msm_bam_dmux_reinit);
/**
* set_rx_buffer_ring_pool() - Configure the size of the rx ring pool to a
* supported value.
* @requested_buffs: Desired pool size.
*
* The requested size will be reduced to the largest supported size. The
* supported sizes must match the values in create_open_signal() for proper
* signal field construction in that function.
*/
static void set_rx_buffer_ring_pool(int requested_buffs)
{
if (requested_buffs >= SZ_256) {
num_buffers = SZ_256;
return;
}
if (requested_buffs >= SZ_128) {
num_buffers = SZ_128;
return;
}
if (requested_buffs >= SZ_64) {
num_buffers = SZ_64;
return;
}
num_buffers = SZ_32;
}
/**
* set_dl_mtu() - Configure the non-default MTU to a supported value.
* @requested_mtu: Desired MTU size.
*
* Sets the dynamic receive MTU which can be enabled via negotiation with the
* remote side. Until the dynamic MTU is enabled, the default MTU will be used.
* The requested size will be reduced to the largest supported size. The
* supported sizes must match the values in create_open_signal() for proper
* signal field construction in that function.
*/
static void set_dl_mtu(int requested_mtu)
{
if (requested_mtu >= SZ_16K) {
dl_mtu = SZ_16K;
return;
}
if (requested_mtu >= SZ_8K) {
dl_mtu = SZ_8K;
return;
}
if (requested_mtu >= SZ_4K) {
dl_mtu = SZ_4K;
return;
}
dl_mtu = SZ_2K;
}
static int bam_dmux_probe(struct platform_device *pdev)
{
int rc;
struct resource *r;
void *subsys_h;
uint32_t requested_dl_mtu;
DBG("%s probe called\n", __func__);
if (bam_mux_initialized)
return 0;
if (pdev->dev.of_node) {
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
pr_err("%s: reg field missing\n", __func__);
return -ENODEV;
}
a2_phys_base = r->start;
a2_phys_size = (uint32_t)(resource_size(r));
a2_bam_irq = platform_get_irq(pdev, 0);
if (a2_bam_irq == -ENXIO) {
pr_err("%s: irq field missing\n", __func__);
return -ENODEV;
}
satellite_mode = of_property_read_bool(pdev->dev.of_node,
"qcom,satellite-mode");
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,rx-ring-size",
&num_buffers);
if (rc) {
DBG("%s: falling back to num_buffs default, rc:%d\n",
__func__, rc);
num_buffers = DEFAULT_NUM_BUFFERS;
}
set_rx_buffer_ring_pool(num_buffers);
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,max-rx-mtu",
&requested_dl_mtu);
if (rc) {
DBG("%s: falling back to dl_mtu default, rc:%d\n",
__func__, rc);
requested_dl_mtu = 0;
}
set_dl_mtu(requested_dl_mtu);
no_cpu_affinity = of_property_read_bool(pdev->dev.of_node,
"qcom,no-cpu-affinity");
BAM_DMUX_LOG(
"%s: base:%p size:%x irq:%d satellite:%d num_buffs:%d dl_mtu:%x cpu-affinity:%d\n",
__func__,
(void *)(uintptr_t)a2_phys_base,
a2_phys_size,
a2_bam_irq,
satellite_mode,
num_buffers,
dl_mtu,
no_cpu_affinity);
} else { /* fallback to default init data */
a2_phys_base = A2_PHYS_BASE;
a2_phys_size = A2_PHYS_SIZE;
a2_bam_irq = A2_BAM_IRQ;
num_buffers = DEFAULT_NUM_BUFFERS;
set_rx_buffer_ring_pool(num_buffers);
}
dma_dev = &pdev->dev;
/* The BAM only suports 32 bits of address */
dma_dev->dma_mask = kmalloc(sizeof(*dma_dev->dma_mask), GFP_KERNEL);
if (!dma_dev->dma_mask) {
DMUX_LOG_KERR("%s: cannot allocate dma_mask\n", __func__);
return -ENOMEM;
}
*dma_dev->dma_mask = DMA_BIT_MASK(32);
dma_dev->coherent_dma_mask = DMA_BIT_MASK(32);
xo_clk = clk_get(&pdev->dev, "xo");
if (IS_ERR(xo_clk)) {
BAM_DMUX_LOG("%s: did not get xo clock\n", __func__);
xo_clk = NULL;
}
dfab_clk = clk_get(&pdev->dev, "bus_clk");
if (IS_ERR(dfab_clk)) {
BAM_DMUX_LOG("%s: did not get dfab clock\n", __func__);
dfab_clk = NULL;
} else {
rc = clk_set_rate(dfab_clk, 64000000);
if (rc)
pr_err("%s: unable to set dfab clock rate\n", __func__);
}
/*
* setup the workqueue so that it can be pinned to core 0 and not
* block the watchdog pet function, so that netif_rx() in rmnet
* only uses one queue.
*/
bam_mux_rx_workqueue = alloc_workqueue("bam_dmux_rx",
WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE, 1);
if (!bam_mux_rx_workqueue)
return -ENOMEM;
bam_mux_tx_workqueue = create_singlethread_workqueue("bam_dmux_tx");
if (!bam_mux_tx_workqueue) {
destroy_workqueue(bam_mux_rx_workqueue);
return -ENOMEM;
}
for (rc = 0; rc < BAM_DMUX_NUM_CHANNELS; ++rc) {
spin_lock_init(&bam_ch[rc].lock);
scnprintf(bam_ch[rc].name, BAM_DMUX_CH_NAME_MAX_LEN,
"bam_dmux_ch_%d", rc);
/* bus 2, ie a2 stream 2 */
bam_ch[rc].pdev = platform_device_alloc(bam_ch[rc].name, 2);
if (!bam_ch[rc].pdev) {
pr_err("%s: platform device alloc failed\n", __func__);
destroy_workqueue(bam_mux_rx_workqueue);
destroy_workqueue(bam_mux_tx_workqueue);
return -ENOMEM;
}
}
init_completion(&ul_wakeup_ack_completion);
init_completion(&bam_connection_completion);
init_completion(&dfab_unvote_completion);
init_completion(&shutdown_completion);
complete_all(&shutdown_completion);
INIT_DELAYED_WORK(&ul_timeout_work, ul_timeout);
wake_lock_init(&bam_wakelock, WAKE_LOCK_SUSPEND, "bam_dmux_wakelock");
init_srcu_struct(&bam_dmux_srcu);
subsys_h = subsys_notif_register_notifier("modem", &restart_notifier);
if (IS_ERR(subsys_h)) {
destroy_workqueue(bam_mux_rx_workqueue);
destroy_workqueue(bam_mux_tx_workqueue);
rc = (int)PTR_ERR(subsys_h);
pr_err("%s: failed to register for ssr rc: %d\n", __func__, rc);
return rc;
}
rc = bam_ops->smsm_state_cb_register_ptr(SMSM_MODEM_STATE,
SMSM_A2_POWER_CONTROL,
bam_dmux_smsm_cb, NULL);
if (rc) {
subsys_notif_unregister_notifier(subsys_h, &restart_notifier);
destroy_workqueue(bam_mux_rx_workqueue);
destroy_workqueue(bam_mux_tx_workqueue);
pr_err("%s: smsm cb register failed, rc: %d\n", __func__, rc);
return -ENOMEM;
}
rc = bam_ops->smsm_state_cb_register_ptr(SMSM_MODEM_STATE,
SMSM_A2_POWER_CONTROL_ACK,
bam_dmux_smsm_ack_cb, NULL);
if (rc) {
subsys_notif_unregister_notifier(subsys_h, &restart_notifier);
destroy_workqueue(bam_mux_rx_workqueue);
destroy_workqueue(bam_mux_tx_workqueue);
bam_ops->smsm_state_cb_deregister_ptr(SMSM_MODEM_STATE,
SMSM_A2_POWER_CONTROL,
bam_dmux_smsm_cb, NULL);
pr_err("%s: smsm ack cb register failed, rc: %d\n", __func__,
rc);
for (rc = 0; rc < BAM_DMUX_NUM_CHANNELS; ++rc)
platform_device_put(bam_ch[rc].pdev);
return -ENOMEM;
}
if (bam_ops->smsm_get_state_ptr(SMSM_MODEM_STATE) &
SMSM_A2_POWER_CONTROL)
bam_dmux_smsm_cb(NULL, 0,
bam_ops->smsm_get_state_ptr(SMSM_MODEM_STATE));
return 0;
}
static struct of_device_id msm_match_table[] = {
{.compatible = "qcom,bam_dmux"},
{},
};
static struct platform_driver bam_dmux_driver = {
.probe = bam_dmux_probe,
.driver = {
.name = "BAM_RMNT",
.owner = THIS_MODULE,
.of_match_table = msm_match_table,
},
};
static int __init bam_dmux_init(void)
{
#ifdef CONFIG_DEBUG_FS
struct dentry *dent;
dent = debugfs_create_dir("bam_dmux", 0);
if (!IS_ERR(dent)) {
debug_create("tbl", 0444, dent, debug_tbl);
debug_create("ul_pkt_cnt", 0444, dent, debug_ul_pkt_cnt);
debug_create("stats", 0444, dent, debug_stats);
}
#endif
bam_ipc_log_txt = ipc_log_context_create(BAM_IPC_LOG_PAGES, "bam_dmux",
0);
if (!bam_ipc_log_txt) {
pr_err("%s : unable to create IPC Logging Context", __func__);
}
rx_timer_interval = DEFAULT_POLLING_MIN_SLEEP;
return platform_driver_register(&bam_dmux_driver);
}
late_initcall(bam_dmux_init); /* needs to init after SMD */
MODULE_DESCRIPTION("MSM BAM DMUX");
MODULE_LICENSE("GPL v2");