android_kernel_lge_bullhead/drivers/soc/qcom/cache_dump.c

301 lines
8.2 KiB
C

/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <soc/qcom/scm.h>
#include <asm/cacheflush.h>
#include <soc/qcom/cache_dump.h>
#include <soc/qcom/memory_dump.h>
#define L2_DUMP_OFFSET 0x14
static dma_addr_t msm_cache_dump_addr;
static void *msm_cache_dump_vaddr;
/*
* These should not actually be dereferenced. There's no
* need for a virtual mapping, but the physical address is
* necessary.
*/
static struct l1_cache_dump *l1_dump;
static struct l2_cache_dump *l2_dump;
static void scm_request_cache_dump(int cache_id)
{
struct scm_desc desc = {
.args[0] = cache_id,
.arginfo = SCM_ARGS(1),
};
if (!is_scm_armv8())
scm_call_atomic1(L1C_SERVICE_ID, CACHE_BUFFER_DUMP_COMMAND_ID,
cache_id);
scm_call2_atomic(SCM_SIP_FNID(L1C_SERVICE_ID,
CACHE_BUFFER_DUMP_COMMAND_ID), &desc);
}
static int msm_cache_dump_panic(struct notifier_block *this,
unsigned long event, void *ptr)
{
#ifdef CONFIG_MSM_CACHE_DUMP_ON_PANIC
scm_request_cache_dump(0x2);
scm_request_cache_dump(0x1);
#endif
return 0;
}
static struct notifier_block msm_cache_dump_blk = {
.notifier_call = msm_cache_dump_panic,
/*
* higher priority to ensure this runs before another panic handler
* flushes the caches.
*/
.priority = 1,
};
static int msm_cache_dump_probe(struct platform_device *pdev)
{
struct msm_cache_dump_platform_data *d = pdev->dev.platform_data;
struct msm_client_dump l1_dump_entry, l2_dump_entry;
struct msm_dump_entry dump_entry;
struct msm_dump_data *l1_inst_data, *l1_data_data, *l2_data;
int ret, cpu;
struct {
unsigned long buf;
unsigned long size;
} l1_cache_data;
struct scm_desc desc;
u32 l1_size, l2_size;
unsigned long total_size;
u32 l1_inst_size, l1_data_size;
phys_addr_t l1_inst_start, l1_data_start, l2_start;
if (pdev->dev.of_node) {
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,l1-dump-size", &l1_size);
if (ret)
return ret;
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,l2-dump-size", &l2_size);
if (ret)
return ret;
} else {
l1_size = d->l1_size;
l2_size = d->l2_size;
};
total_size = l1_size + l2_size;
msm_cache_dump_vaddr = (void *) dma_alloc_coherent(&pdev->dev,
total_size, &msm_cache_dump_addr,
GFP_KERNEL);
if (!msm_cache_dump_vaddr) {
pr_err("%s: Could not get memory for cache dumping\n",
__func__);
return -ENOMEM;
}
memset(msm_cache_dump_vaddr, 0xFF, total_size);
/* Clean caches before sending buffer to TZ */
dmac_clean_range(msm_cache_dump_vaddr,
msm_cache_dump_vaddr + total_size);
desc.args[0] = l1_cache_data.buf = msm_cache_dump_addr;
desc.args[1] = l1_cache_data.size = l1_size;
desc.arginfo = SCM_ARGS(2, SCM_RW, SCM_VAL);
if (!is_scm_armv8())
ret = scm_call(L1C_SERVICE_ID, L1C_BUFFER_SET_COMMAND_ID,
&l1_cache_data, sizeof(l1_cache_data), NULL, 0);
else
ret = scm_call2(SCM_SIP_FNID(L1C_SERVICE_ID,
L1C_BUFFER_SET_COMMAND_ID), &desc);
if (ret)
pr_err("%s: could not register L1 buffer ret = %d.\n",
__func__, ret);
l1_dump = (struct l1_cache_dump *)(uint32_t)msm_cache_dump_addr;
l2_dump = (struct l2_cache_dump *)(uint32_t)(msm_cache_dump_addr
+ l1_size);
#if defined(CONFIG_MSM_CACHE_DUMP_ON_PANIC)
desc.args[0] = l1_cache_data.buf = msm_cache_dump_addr + l1_size;
desc.args[1] = l1_cache_data.size = l2_size;
desc.arginfo = SCM_ARGS(2, SCM_RW, SCM_VAL);
if (!is_scm_armv8()) {
ret = scm_call(L1C_SERVICE_ID, L2C_BUFFER_SET_COMMAND_ID,
&l1_cache_data, sizeof(l1_cache_data), NULL, 0);
} else {
ret = scm_call2(SCM_SIP_FNID(L1C_SERVICE_ID,
L2C_BUFFER_SET_COMMAND_ID), &desc);
}
if (ret)
pr_err("%s: could not register L2 buffer ret = %d.\n",
__func__, ret);
#endif
if (MSM_DUMP_MAJOR(msm_dump_table_version()) == 1) {
l1_dump_entry.id = MSM_L1_CACHE;
l1_dump_entry.start_addr = msm_cache_dump_addr;
l1_dump_entry.end_addr = l1_dump_entry.start_addr + l1_size - 1;
l2_dump_entry.id = MSM_L2_CACHE;
l2_dump_entry.start_addr = msm_cache_dump_addr + l1_size;
l2_dump_entry.end_addr = l2_dump_entry.start_addr + l2_size - 1;
ret = msm_dump_tbl_register(&l1_dump_entry);
if (ret)
pr_err("Could not register L1 dump area: %d\n", ret);
ret = msm_dump_tbl_register(&l2_dump_entry);
if (ret)
pr_err("Could not register L2 dump area: %d\n", ret);
} else {
l1_inst_data = kzalloc(sizeof(struct msm_dump_data) *
num_present_cpus(), GFP_KERNEL);
if (!l1_inst_data) {
pr_err("l1 inst data structure allocation failed\n");
ret = -ENOMEM;
goto err0;
}
l1_data_data = kzalloc(sizeof(struct msm_dump_data) *
num_present_cpus(), GFP_KERNEL);
if (!l1_data_data) {
pr_err("l1 data data structure allocation failed\n");
ret = -ENOMEM;
goto err1;
}
l1_inst_start = msm_cache_dump_addr;
l1_data_start = msm_cache_dump_addr + (l1_size / 2);
l1_inst_size = l1_size / (num_present_cpus() * 2);
l1_data_size = l1_inst_size;
for_each_cpu(cpu, cpu_present_mask) {
l1_inst_data[cpu].addr = l1_inst_start +
cpu * l1_inst_size;
l1_inst_data[cpu].len = l1_inst_size;
dump_entry.id = MSM_DUMP_DATA_L1_INST_CACHE + cpu;
dump_entry.addr = virt_to_phys(&l1_inst_data[cpu]);
ret = msm_dump_data_register(MSM_DUMP_TABLE_APPS,
&dump_entry);
/*
* Don't free the buffers in case of error since
* registration may have succeeded for some cpus.
*/
if (ret)
pr_err("cpu %d l1 inst dump setup failed\n",
cpu);
l1_data_data[cpu].addr = l1_data_start +
cpu * l1_data_size;
l1_data_data[cpu].len = l1_data_size;
dump_entry.id = MSM_DUMP_DATA_L1_DATA_CACHE + cpu;
dump_entry.addr = virt_to_phys(&l1_data_data[cpu]);
ret = msm_dump_data_register(MSM_DUMP_TABLE_APPS,
&dump_entry);
/*
* Don't free the buffers in case of error since
* registration may have succeeded for some cpus.
*/
if (ret)
pr_err("cpu %d l1 data dump setup failed\n",
cpu);
}
l2_data = kzalloc(sizeof(struct msm_dump_data) *
num_present_cpus(), GFP_KERNEL);
if (!l2_data) {
pr_err("l2 data structure allocation failed\n");
ret = -ENOMEM;
goto err2;
}
l2_start = msm_cache_dump_addr + l1_size;
l2_data->addr = l2_start;
l2_data->len = l2_size;
dump_entry.id = MSM_DUMP_DATA_L2_CACHE;
dump_entry.addr = virt_to_phys(l2_data);
ret = msm_dump_data_register(MSM_DUMP_TABLE_APPS,
&dump_entry);
if (ret)
pr_err("l2 dump setup failed\n");
}
atomic_notifier_chain_register(&panic_notifier_list,
&msm_cache_dump_blk);
return 0;
err2:
kfree(l1_data_data);
err1:
kfree(l1_inst_data);
err0:
dma_free_coherent(&pdev->dev, total_size, msm_cache_dump_vaddr,
msm_cache_dump_addr);
return ret;
}
static int msm_cache_dump_remove(struct platform_device *pdev)
{
atomic_notifier_chain_unregister(&panic_notifier_list,
&msm_cache_dump_blk);
return 0;
}
static struct of_device_id cache_dump_match_table[] = {
{ .compatible = "qcom,cache_dump", },
{}
};
EXPORT_COMPAT("qcom,cache_dump");
static struct platform_driver msm_cache_dump_driver = {
.remove = msm_cache_dump_remove,
.driver = {
.name = "msm_cache_dump",
.owner = THIS_MODULE,
.of_match_table = cache_dump_match_table,
},
};
static int __init msm_cache_dump_init(void)
{
return platform_driver_probe(&msm_cache_dump_driver,
msm_cache_dump_probe);
}
static void __exit msm_cache_dump_exit(void)
{
platform_driver_unregister(&msm_cache_dump_driver);
}
late_initcall(msm_cache_dump_init);
module_exit(msm_cache_dump_exit)